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Abstract

In today’s data-driven era, methods for filling data gaps are becoming more crit-
ical. This dissertation proposes a novel two-step method for the matrix recovery
problem. Our approach combines the theoretical foundations of the Column Sub-
set Selection and Low-rank Matrix Completion problems. The proposed method,
in each step, solves a convex optimization task. In the first step, a subset of
columns is drawn at random. The resulting matrix is completed using a selected
algorithm that solves the matrix completion task. The second step solves a least
squares problem using the known elements and the completed columns.

We present three algorithms that implement our Column Selected Matrix
Completion (CSMC) method, each dedicated to a different size problem. We
performed a formal analysis of the presented method, in which we formulated the
necessary assumptions and the probability of finding a correct solution.

In the second part of the paper, we present the results of the experimental
work. Numerous numerical experiments verified the correctness and performance
of the algorithms. To study the influence of the size of the matrix, its rank, and the
proportion of missing elements on the quality of the solution and the computation
time, experiments were performed on synthetic data. The presented method was
applied to three problems: prediction of movie rates in a recommendation system,
image completion and prediction of connections in a graph.

Our thorough analysis shows that CSMC provides solutions of comparable
quality to matrix completion algorithms, which are based on convex optimization.
However, CSMC offers notable savings in terms of runtime.

13



Acknowledgments
I am deeply thankful to Professor Ewa Niewiadomska-Szynkiewicz, my supervisor,
for her constant support, enthusiastic guidance, and mentorship throughout my
research journey.

I am incredibly grateful to Dr. hab. Michał Karpowicz for not just igniting my
interest in linear algebra but also for his constant encouragement, sincere interest
in my thoughts, and willingness to offer assistance whenever needed.

Most importantly, I would like to thank my Dad for teaching me the impor-
tance of finding joy in my work.

14



Chapter 1

Introduction

Matrix-based datasets are common in various domains. Images, time series,
graphs, and recommendation systems, are just a few examples with natural rep-
resentation as real-valued matrices. However, these matrices often miss entries
due to data collection issues, sensor errors, or privacy considerations. To fully
exploit the potential of matrix-based datasets, we need to address the missing
data problem.

This dissertation proposes a novel, two-staged matrix completion method de-
riving benefits from integrating two fields of modern linear algebra. The first one
is the theory of low-rank matrix completion. Many efficient algorithms exploit the
low-rank structure of the data and principles of convex optimization to recover
the missing entries. The second one is the theory of the column subset selec-
tion problem. This line of research focuses on finding the column of the matrix
representing the original matrix approximately, i.e., preserving specific desirable
properties.

Our method, Column Selected Matrix Completion (CSMC), addresses the
problem of filling matrices with many columns. In the first stage, CSMC se-
lects a subset of columns and recovers them with a chosen matrix completion
algorithm. In the second stage, the relevant least squares problem is solved. We
introduce three algorithms implementing CSMC. Those algorithms employ vari-
ous numerical solvers depending on the size of the completed matrix.

The integration of the two approaches allows CSMC to decrease the compu-
tational cost of the convex matrix completion algorithms while maintaining their
theoretical guarantees. This thesis provides a formal analysis of the CSMC, in-
cluding required assumptions and the probability of a successful recovery.

Several numerical experiments on synthetic and real-world datasets were con-
ducted to verify theoretical results. The performance of the presented algorithms
was compared with the commonly used matrix completion algorithms described in
the literature. The CSMC method was applied to three real-life scenarios: movie
recommendation, image inpainting, and graph link prediction.
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1.1 Research hypothesis

This section presents the research hypotheses that guide this dissertation study.

Hypothesis 1
The quality of the solution provided by the proposed new CSMC method is
comparable to that of the matrix completion methods described in the litera-
ture.

This hypothesis proposes that there is no significant difference in the solu-
tion quality between the CSMC and the matrix completion methods, includ-
ing nuclear norm minimization, proximal gradient descent, algorithm based
on the factorization and iterative SVD. The first aim of the research is to
provide theoretical guarantees of the CSMC. The study’s second aim is to
empirically test this hypothesis by comparing the performance, accuracy, or
effectiveness of the methods using appropriate evaluation metrics or criteria.

Hypothesis 2
The new algorithms implementing the CSMC methods are efficient and scal-
able techniques for matrix recovery and competitive with other algorithms
using nuclear norm minimization

This hypothesis suggests that algorithms implementing the CSMC method
outperform algorithms based on the nuclear norm minimization in terms of
computational efficiency, resulting in significantly shorter execution times.
The research would aim to test this hypothesis by measuring the execu-
tion times of the new algorithms under various conditions or datasets and
comparing their efficiency with other techniques described in the literature.

1.2 Structure of the dissertation

The structure of this thesis is outlined as follows. Chapter 2 introduces the topic,
including preliminary concepts and notation. In Chapter 3, we delve into the
motivation behind the theory of low-rank matrix completion and trace its devel-
opment over time. We introduce CSMC and articulate the reasons and benefits
behind its application. The chapter ends with a discussion of the various appli-
cation of matrix completion. Chapter 4 systematically reviews the contemporary
methods of matrix completion. The survey offers a comprehensive examination
of the strengths and weaknesses inherent in the methods. Two methods based on
convex optimization are discussed in Chapter 5. Those approaches differ in scala-
bility and noise robustness. The matrix’s properties determining the completion’s
success are concisely explained. Chapter 6 considers the column subset selection
problem in the context of matrix completion. The CSMC is formally introduced
in Chapter 7. We discuss three algorithms implementing the CSMC method dedi-
cated to the various matrix completion problem sizes. An in-depth formal analysis
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of our method is carried out in the last section of the chapter. The theoretical
results are verified in Chapter 8, which describes numerical experiments on syn-
thetic data sets. This chapter aims to compare the performance of the CSMC
algorithms in various settings and benchmark them with the matrix completion
algorithms described in the literature. To assess the practical effectiveness of the
CSMC methods, they were employed in three real-world settings in Chapter 9.
These applications include recommendation systems, image inpainting and link
predictions in graphs. We conclude the dissertation in Chapter 10.
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Chapter 2

Preliminaries and notation

This chapter provides basic definitions and notation used in the thesis. We closely
follow the conventions established in the literature and build upon the foundations
of the low-rank matrix completion theory.

The matrices and vectors are denoted in bold (X ∈ Rn1×n2 , x ∈ Rn). The
xij is the (i, j) entry of X. We will denote as xj ∈ Rn1 j-th column vector of
X ∈ Rn1×n2 . The xi: ∈ Rn2 will refer to the vector defined by the i-th row of
X. For the set of d indices, I ∈ {1, . . . , n2}, X:I ∈ Rn1×d will denote the column
submatrix of X build of columns with indices in I. ei will denote a i-th standard
basis vector of Rn, equal to 1 in component i and 0 everywhere else.

We will now introduce some notation regarding the matrix completion The
following definitions and notation will be used throughout the thesis.

We will denote as M ∈ Rn1×n2 the matrix we would like to recover in the
matrix completion problem,

M =

(
−2 4 16
−3 6 24

)
. (2.1)

For the matrix completion problem, we will use the following notation. We
denote the set of known indices as Ω. We will also consider a sampling operator
RΩ : Rn1×n2 → Rn1×n2 which sets entries from Ω to 0, e.g.

Definition 2.0.1. We will denote as Ω ⊆ {1, . . . , n1} × {1, . . . , n2} the set of the
indices of the observed entries of M ∈ Rn1×n2.

Suppose, we know only two entries Ω = {(1, 1), (2, 2)}, then we consider the
following matrix completion problem,

(
−2 ? ?
? 6 ?

)
, (2.2)

Definition 2.0.2. We will denote as Ω⊥ the complement of a set Ω ⊆ {1, . . . , n1}×
{1, . . . , n2} , i.e. {1, . . . , n1} × {1, . . . , n2} \ Ω.
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For the example mentioned above, Ω⊥ = {(1, 2), (1, 3), (2, 1), (2, 3)}.

Definition 2.0.3. The operator defined be the Ω set, RΩ : Rn1×n2 → Rn1×n2, sets
all matrix elements to 0, except those in the Ω set. Formally,

RΩ(X) =
∑

(i,j)∈Ω

xijeie
T
j , (2.3)

where xij is a (i, j)-th entry of X, ei for i = 1, . . . , n1 are standard basis vectors
in Rn1, and ej for i = 1, . . . , n2 are standard basis vectors in Rn2.

For Ω = {(0, 0), (1, 1)} and M defined in eq. (2.1),

RΩ(M) =

(
−2 0 0
0 6 0

)
. (2.4)

Definition 2.0.4. The rank of a matrix X ∈ Rn1×n2 is the dimension of the vector
space spanned by its columns.

We will consider Singular Value Decomposition (SVD) of M,

M = UΣVT , (2.5)

Where U ∈ Rn1×n1 and V ∈ Rn2×n2 are orthogonal matrices, and Σ ∈ Rn1×n2

is a rectangular diagonal matrix with non-negative numbers on its diagonal σi =
Σii called singular values. We will follow the convention σ1 ≥ σ2 . . . σr > 0, where
r is the rank of M. Eq. 2.5 can be rewritten as

M =
r∑
i=1

σiuiv
T
i , (2.6)

where ui denotes i-th column of U and vi denotes i-th column of V. The SVD
is often referred to as the full SVD, while the compact SVD is a factorization,

M = ŪΣ̄V̄T , (2.7)

where Ū ∈ Rn1×r, V̄ ∈ Rn2×r, and Σ̄ ∈ Rr×r. A. The compact SVD retains
only the r columns of U, V, associated with the non-zero singular values. We will
denote as Ū a r-dimensional subspace of Rn1 spanned by the first r left singular
vectors. We will denote as PŪ the orthogonal projection onto the Ū ,

PŪX = ŪŪTX, (2.8)

since column vectors of U are orthonormal.
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Definition 2.0.5. The ℓ0-(pseudo)norm of vector x ∈ Rn is the number of its
non-zero entries.

Definition 2.0.6. The ℓ1-norm of vector x ∈ Rn is defined as

∥x∥1 =
n∑
i=1

|xi|, (2.9)

Three different norms on matrices will be discussed.

Definition 2.0.7. The Frobenius norm of a matrix X ∈ Rn1×n2 is given by

∥X∥F =

√√√√ n1∑
i=1

n2∑
j=1

|xij|2, (2.10)

equivalently,

∥X∥F =
√

Tr(XTX), (2.11)

where Tr(XTX) denotes trace of the matrix XTX ∈ Rn2×n2.

From (2.11) the Frobenius norm can be calculated according to the following
remark.

Remark 2.0.1.

∥X∥2F =
r∑
i=1

σ2
i , (2.12)

where r denotes the rank of matrix X.

Definition 2.0.8. The spectral norm of a matrix X ∈ Rn1×n2 is the largest sin-
gular value of X

∥X∥2 = max
1≤i≤r

σi, (2.13)

where σi is a non-zero singular value of X for i = 1, · · · , r and r is a rank of X.

Remark 2.0.2. Let X ∈ Rn1×n2 be a matrix with rank r,

1

r
∥X∥2F ≤ ∥X∥22 ≤ ∥X∥2F . (2.14)

Proof. It follows from the following inequality,

1

r

r∑
i=1

σ2
i ≤ max

1≤i≤r
σ2
i ≤

r∑
i=1

σ2
i . (2.15)
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Definition 2.0.9. The nuclear norm of a matrix X ∈ Rn1×n2 is given by the sum
of singular values of X.

∥X∥∗ =
∑
1≤i≤r

σi, (2.16)

where σi are the non-zero singular values of X for i = 1, · · · , r and r is a rank of
X.

The nuclear norm is also known as the matrix Schatten-1 or trace norm.

Remark 2.0.3. Let X ∈ Rn1×n2 be a matrix with rank r, and let σ ∈ Rmin{n1,n2}

be the vector of its singular values. Since the rank is the number of the non-zero
singular values, then

r = ∥σ∥0. (2.17)

From the definition of the nuclear norm and the fact that σi ≥ 0 for i =
1, . . . ,min{n1, n2},

∥X∥∗ = ∥σ∥1. (2.18)

Definition 2.0.10. Let X,Y ∈ Rn1×n2, the Frobenius inner product is defined as,

⟨X,Y⟩ = tr(XTY). (2.19)

Methods introduced in this thesis are based on the Column Subset Selection
and least-squares problems. The Moore-Penrose inverse of a matrix, also known as
the pseudoinverse, is a generalization of the matrix inverse for non-square matrices
or matrices that are not full rank [1, 2]. The pseudoinverse inverse allows us to
solve linear systems of equations even when the matrix is singular or not of full
rank.

Definition 2.0.11. Let X ∈ Rn1×n2, the pseudoinverse of X, defined as a matrix
X† ∈ Rn2×n1, satisfying the following the Moore-Penrose conditions:

1. XX†X = X,

2. X†XX† = X†,

3. (XX†)T = XX†,

4. (X†X)T = X†X.
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The pseudoinverse can be calculated using the singular value decomposition.
If SVD of X is given by

X = UxΣxVx
T , (2.20)

where U ∈ Rn1×n1 , V ∈ Rn2×n2 , and Σ ∈ Rn1×n2 , then

X† = VxΣ
†
xUx

T , (2.21)

The pseudoinverse of Σ is obtained by taking the reciprocal of the non-zero
singular values and taking the transpose of the resulting matrix.
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Chapter 3

Motivation and problem definition

Matrix Completion (MC) gained significant attention and popularity with the
Netflix Prize competition, which aimed to improve movie recommendations. The
competition was launched by the popular streaming platform in 2006. The goal
of the contest was to improve the accuracy of Netflix’s movie recommendation
algorithm by 10%. The company offered a prize of $1 million to the team that
could achieve this improvement. The company provided a large dataset contain-
ing anonymized movie ratings from their users. The dataset comprised over 100
million ratings from hundreds of thousands of subscribers. The participants were
tasked with developing a recommendation algorithm that could predict how a
user would rate a movie based only on the previous ratings in the system. The
contest lasted for several years, and during that time, many teams from around
the world participated and submitted their algorithms. The Netflix Prize brought
matrix completion techniques into the spotlight, leading to field advancements.
Since then, matrix completion has been extensively studied and applied in various
domains, including recommendation systems, image inpainting, sensor networks,
and more [3].

Matrix completion algorithms can employ different optimization frameworks,
such as convex optimization, non-convex optimization, iterative methods, or prob-
abilistic approaches [4–6]. This thesis focuses on convex optimization methods.
The elegance of convex optimization lies in its solid theoretical foundations, which
allow for the development of efficient algorithms with guaranteed convergence and
optimality properties.

3.1 Collaborative filtering

In collaborative filtering, the goal is to predict the ratings or preferences of users
for items they have not yet rated or interacted with [7–10]. This problem can
be formulated as a matrix completion task, where the rows represent users, the
columns represent items, and the matrix entries correspond to the user-item rat-
ings. The basing idea behind collaborative filtering is that people with similar
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preferences or behaviours will likely have similar preferences in the future. The
Singular Value Decomposition (SVD) offers valuable insight into collaborative fil-
tering [11, 12]. Let M ∈ Rn1×n2 be a user-movie rating matrix. The SVD is a
matrix decomposition such that

where U ∈ Rn1×n1 and V ∈ Rn2×n2 are orthonormal matrices, and Σ ∈ Rn1×n2

is a rectangular diagonal matrix with non-negative numbers on its diagonal σi =
Σii called singular values. We will follow the convention σ1 ≥ σ2 . . . σr > 0, where
r is the rank of M. Eq. 2.5 can be rewritten as

M =
r∑
i=1

σiuiv
T
i , (3.1)

where ui denotes i-th column of U and vi denotes i-th column of V. In the
context of collaborative filtering, the singular vectors obtained from SVD are often
associated with latent factors. Latent factors represent underlying dimensions or
features contributing to a recommendation system’s user-item interactions. Each
of the left singular vectors represents the importance of the given factor to a
user, while the right singular vectors represent the relationships between items
and latent factors. Singular values express the significance of each latent factor.
The larger the singular value, the more significant the corresponding latent factor
in explaining the variances or patterns in the rating matrix. The latent factors
are abstract features that influence user preferences and movie characteristics.
For example, latent factors might represent dimensions such as romantic comedy,
documentary, or horror. The presence or absence of these latent factors in the
user-movie interactions determines the recommendations made by the system.
Collaborative filtering algorithms can identify similar users or items based on
their latent factor representations by mapping users and movies to the latent
factor space. Users with similar preferences will have similar weights for the same
latent factors, and items with similar characteristics will also have similar weights.
This similarity in the latent factor space allows for accurate predictions. Matrix
completion techniques can fill in the missing entries in the rating matrix and
provide personalized recommendations [3, 13,14].

3.2 Low-rank matrix completion
A convenient strategy for solving matrix completion would be to seek the ma-
trix which matches the observed entries while having the lowest rank [3, 15–17].
This could be interpreted as looking for the simplest explanation of the observed
ratings, where simplicity is expressed as the number of latent factors. From a
socio-psychological perspective, this can be interpreted as an attempt to identify
collective preferences among individuals. By reducing the rank, matrix comple-
tion algorithms aim to uncover underlying dimensions of shared tastes among
users, reflecting social norms or trends.
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Suppose that one of the singular vectors in U is a standard basis vector. It
implies the existence of the latent factor, which has some meaning only to one user.
Therefore, we can not infer anything from other users’ ratings. If we do not know
all ratings made by this user, we can not successfully predict missing ratings. This
phenomenon motivates the definition of the matrix coherence, which measures
how much singular vectors (either left or right) are colinear with standard basis
vectors. Coherence is essential in matrix completion and affects the number of
observed entries required for accurate recovery. On the other hand, incoherent
matrices may require fewer observed entries for successful completion compared
to coherent matrices. The low coherence property enables fewer measurements
or samples to recover the original matrix accurately. This can be advantageous
when dealing with limited or sparse data [3, 13,15–18].

3.3 From compressed sensing to convex matrix
completion

Compressed sensing, also known as compressive sensing, emerged as a field of re-
search in the early 2000s. It was introduced by Emmanuel Candès, Terence Tao,
and David Donoho, among others, who laid the foundations and contributed to its
development [19–24]. The key idea of compressed sensing was to exploit the com-
pressibility of signals to acquire and process them more efficiently. Compressed
sensing acquires a small number of measurements, which capture the essential
information of the signal. The breakthrough in compressed sensing was the real-
ization that sparse signals could be accurately reconstructed from these limited
measurements using convex optimization. It came with the realization that ℓ0
pseudo-norm, which measures the sparsity of a vector by counting the number
of its non-zero elements, can be relaxed to ℓ1 norm. The ℓ1 norm is the sum of
the absolute values of the elements of a vector and allows for the formulation of
convex optimization problems.

The success of compressed sensing encouraged researchers to apply analogous
relaxation to the constrained rank minimization problem, which aims to recover
matrix M. The rank may be expressed as the number of non-zero singular values:
ℓ0 norm of the singular values vector σ. The ℓ1 norm of σ is referred to as the
nuclear norm of M and has found applications in various areas, including signal
processing and robust optimization [3, 15,17,18,25].

In their seminal work, Candes and Recht proved that, under certain assump-
tions, solving nuclear norm minimization leads to successful recovery [26]. The
theoretical guarantees are based on the properties such as matrix rank and coher-
ence, number and distribution of observed entries. There has been a significant
amount of research extending these results to noisy settings, improved bounds on
the sample complexity and analysing the robustness of nuclear norm minimization
algorithms to noise and outliers. Recht [15] greatly simplified the analysis and
provided a foundation for understanding the potential and limitations of nuclear
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norm minimization in practical matrix completion scenarios. The research on
theoretical guarantees for nuclear norm based matrix completion has significantly
advanced our understanding of the conditions under which accurate recovery is
possible.

3.4 Column Selected Matrix Completion

The nuclear norm minimization can be solved in polynomial time with the Semidef-
inite Programming (SDP) [3,17,25]. As such it can be handled with one of the shelf
SDP solvers including those using interior point methods or first-order solvers such
as Splitting Conic Solver (SCS). However, SDP solvers can consume substantial
memory resources, particularly for large problem sizes. This can limit the scalabil-
ity of SDP solvers when dealing with large matrices [17]. To limit computational
burden, an algorithm dedicated to nuclear norm minimization, including Proximal
Gradient Descent (PGD) has been developed [27–29]. The PGD for nuclear norm
minimization leverages the closed formula for the proximal operator, which incor-
porates Singular Value Thresholding (SVT) operation. While SVT offers an ease
of implementation, there is a computational cost associated with this approach.
The straightforward implementation of SVT involves computing the SVD of the
updated matrix in each iteration. Consequently, SVT can become computation-
ally expensive for large-scale problems and inherits its difficulty in parallelizing
efficiently. Thus, it is desired to develop methods limiting the problem size while
providing theoretical guarantees. In this thesis, we introduce the Column Selected
Matrix Completion (CSMC), a two-staged method for low-rank matrix recovery.
In the first stage, CSMC randomly samples columns of M and recovers the column
submatrix using the preferred matrix completion algorithm. In the second stage,
the relevant least squares problem is solved to reconstruct M. Least squares re-
gression is a fundamental technique in machine learning. It is employed in linear
regression models for prediction and estimation tasks and can be solved efficiently
using various numerical methods and optimization techniques [30–32].

The CSMC offers computational savings when one dimension of M is signifi-
cantly bigger. This scenario is valid in the Netflix Prize setup, where the number
of movies was fairly bigger than the number of movies.

The CSMC benefits from the recent research in the area of Column Subset
Selection (CSS) problem and CUR factorization [33–37]. Those linear algebra
techniques aim to reduce the dimensionality of a matrix while preserving essential
information. Their popularity stems from the ability to provide interpretable low-
rank approximations, preserve structural information, and offer computational
efficiency. CSS refers to selecting a subset of columns from a given matrix. At the
same time, CUR is a low-rank matrix approximation technique that decomposes
a given matrix into the column submatrix, row submatrix, and an intersection
of the selected rows and columns. Recent work has shown that for incoherent
matrices, uniform sampling achieves satisfying results [37]. Uniform sampling
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does not require any complex algorithms or information about entries in M.

3.5 Applications of low-rank matrix completion

The motivation behind low-rank matrix completion is to exploit the inherent
low-rank structure of the matrices. By assuming that a low-rank matrix can well
approximate the underlying matrix, the missing entries can be effectively imputed.
We have already discussed its applicability in recommendation systems. While
low-rank matrix completion is indeed widely used in recommendation systems, it
has found applications in various other domains as well [17, 38–42].

In many real-world datasets, including images, text, and biological data, there
are often redundant elements or patterns. This redundancy leads to a low-rank
structure, as the data can be well approximated by a smaller number of underlying
factors or components.

The low-rank matrix completion finds applications in image and video pro-
cessing tasks such as image inpainting and video denoising [13, 43–47]. In image
inpainting, missing or corrupted parts of an image are reconstructed by completing
the observed pixel values. Matrix completion can also be used for video denoising
by exploiting temporal correlations between video frames to recover missing or
noisy frames [43,46].

In bioinformatics, low-rank matrix completion techniques have been employed
for tasks such as gene expression analysis, protein structure prediction, and DNA
sequencing. By leveraging the low-rank property of biological data, missing values
in high-dimensional datasets can be imputed, leading to more accurate analysis
and predictions [39,48–50].

In Magnetic Resonance Imaging (MRI), low-rank matrix completion tech-
niques have been used for accelerated imaging and reconstruction. By exploit-
ing the low-rank structure of MR images, fewer measurements can be acquired,
leading to faster imaging and reduced scan times [51–53].

A matrix with a rank equal to the number of latent variables can be used to
approximate the inverse marginal covariance matrix of the observed variables in
a sparse graphical model with latent variables [54,55].

Hankel matrix completion techniques leverage the structure and properties
of Hankel matrices to estimate missing or incomplete entries and enable various
analysis tasks in time series analysis, system identification, and signal processing.
These techniques aim to capture the underlying patterns, dynamics, and relation-
ships in the data, ultimately improving prediction, estimation, and analysis in
time-dependent or sequential scenarios [40,56,57].

Low-rank matrix completion techniques can be applied to network traffic anal-
ysis and anomaly detection. By reconstructing the traffic matrix from incomplete
or sampled measurements, anomalies and patterns in network behaviour can be
identified. It is also useful in IoT networks, where data collection from sensor
networks or IoT devices is incomplete or prone to missing readings. By applying
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matrix completion techniques, missing sensor measurements can be estimated, en-
abling accurate data analysis, anomaly detection, and system monitoring [58–60].

Low-rank matrix completion has also been used in environmental monitoring
applications, such as air quality monitoring and pollution estimation. By recover-
ing missing or sparse measurements, low-rank matrix completion enables accurate
estimation and prediction of environmental conditions [61,62].

Low-rank matrix completion techniques have been employed in natural lan-
guages processing tasks, such as text completion, sentiment analysis, and doc-
ument recommendation. By exploiting the low-rank structure of text corpora,
missing words or documents can be predicted, and latent features can be ex-
tracted for text analysis [41,63].

Low-rank matrix completion can be applied to resource allocation tasks [64–
66], i.e., to predict and assess how well an incoming application will run on differ-
ent hardware platforms available. By treating the problem as a matrix completion
task, where the matrix represents the relationship between applications and hard-
ware platforms, we may predict the performance of an application on different
hardware platforms. [67, 68].

Matrix completion methods can be utilized in social network analysis to esti-
mate unobserved social connections or interactions between individuals. By com-
pleting the partially observed social network matrix, researchers can infer missing
connections, predict links, and understand the structure and dynamics of social
networks [69,70].

These are just a few examples of the broad range of applications for matrix
completion. The technique is versatile and can be adapted to various domains
where incomplete data is encountered, enabling the recovery of missing informa-
tion and facilitating data analysis and decision-making processes [42].
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Chapter 4

Matrix completion methods

This chapter discusses various formulations of the low-rank matrix completion
problem. Low-rank matrix completion algorithms aim to estimate the missing
entries of a partially observed matrix by exploiting the low-rank assumption. As
discussed in the previous chapter, the low-rank assumption is often made based on
the intuition that many real-world matrices exhibit underlying structures that low-
rank representations can effectively capture. These algorithms typically leverage
convex or non-convex optimisation techniques to recover the low-rank structure
and complete the matrix. Using the low-rank assumption, these algorithms can
often achieve accurate and efficient matrix completion even with a limited number
of observed entries.

4.1 Convex method for low-rank matrix
completion

The straightforward approach to the low-rank matrix completion is to seek the
matrix with the lowest rank that matches the observations,

∣∣∣∣∣minimize rank(X)

s.t. Xij = Mij for (i, j) ∈ Ω,
(P1)

where by definition 2.0.1, Ω denotes the set indices of known data of M.
A plausible interpretation to put on P1 is that solution would be the simplest
explanation of the observed data. In collaborative filtering, problem P1 minimizes
the number of latent factors behind users’ preferences. However, solving rank
minimization is NP-hard [71, 72]. To overcome this drawback, problem P1 may
be relaxed to the convex optimization problem. Because matrix rank is equal
to the number of non-zero singular values of X, the objective function can be
approximated by their sum, i.e. its nuclear norm of the matrix introduced in
Definition 2.0.9. The nuclear norm can be used as a convex surrogate for the
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rank of a matrix, enabling the formulation of certain optimization problems with
a nuclear norm regularization term.

Exact matrix completion algorithms As discussed in Section 3.3, the suc-
cess of compressed sensing in sparse signal recovery [73–76] inspired researchers
to explore similar ideas for matrix completion and motivated the following opti-
mization problem

∣∣∣∣∣minimize ∥X∥∗
s.t. Xij = Mij for (i, j) ∈ Ω.

(P2)

The problem P2 can be solved in polynomial time by Semidefinite Program-
ming (SDP) [71]. SDP is an optimization problem where the objective func-
tion and constraints involve linear matrix inequalities or semidefinite constraints.
SDPs generalize linear and quadratic programming problems where the variables
are positive semidefinite matrices. According to the Definition 2.0.3, the con-
straints of the problem P2 can be expressed as ∥RΩ(X) − RΩ(M)∥F = 0. To
reduce computational costs of the off-the-shelf SDP solvers, Cai et al. introduced
the regularized constrained optimization,

∣∣∣∣∣∣minimize
1

2
∥RΩ(X)−RΩ(M)∥2F + λ∥X∥∗

s.t. Xij = Mij for (i, j) ∈ Ω,
(P3)

where λ > 0 is a regularization parameter [19]. The authors have shown that
the solution converges to the solution of the P2 problem, as λ→∞ (Theorem 3.1
in [19]). The algorithm uses Singular Value Thresholding (SVT) operator, which
we discuss in the next chapter.

Inexact matrix completion To handle noisy data and avoid model overfitting,
Mazumder et al. [27] employed Proximal Gradient Descent (PGD) algorithm for
the following optimization problem,

minimize
X

1

2
∥RΩ(X)−RΩ(M)∥2F + λ∥X∥∗. (P4)

The loss function penalizes the difference between the observed and estimated
entries while promoting low-rank solutions. The alternative formulation of the
inexact matrix completion problem is to minimize the mismatch between the
observed entries with the constraint on its nuclear norm,

∣∣∣∣∣∣minimize
1

2
∥RΩ(X)−RΩ(M)∥2F

s.t. ∥X∥∗ ≤ λ,
(P5)
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where λ > 0 is a tuning parameter. It can be memory-efficiently solved by
the Frank-Wolfe (conditional-gradient descent) schema [77,78]. Jaggi popularized
these methods in his PhD Thesis [77]. Those methods have much lower itera-
tion space complexity since they require only the rank of one SVD. The classical
Frank-Wolfe schema converges very slowly. Recently, much work has been done to
achieve speedups of this method [79–81], including SketchyCG, which uses random
projections [82].

4.2 Matrix factorization based matrix completion
The more recent methods use the non-convex optimization problem and aim to
minimize least squares error on the observed entries while constraining the rank
of the solution,

∣∣∣∣∣minimize ∥RΩ(X)−RΩ(M)∥2F
s.t. rank(X) ≤ k,

(P6)

where k > 0 denotes the maximum possible rank. Non-convex rank constraint
can be imposed by the parametrizing matrix X as the product of two matrices
L ∈ Rn1×k,R ∈ Rn2×k, The problem P6 is equivalent to

min
L∈Rn1×k,R∈Rn2×k

∥RΩ(M)−RΩ(LR
T )∥F . (P7)

The problem is often referred to as Burer-Monteiro factorization [17,83]. This
parametrization is non-unique. If X = LRT , then for any orthonormal matrix
Q ∈ Rk×k, X = LQQTRT , since QQT = I. On the other hand, this formula-
tion can limit the computational burden. The rank r is often much smaller than
min{n1, n2}, thus the size of the variables (L,R) is roughly linear in (n1 + n2)
rather than quadratic. This opens up an opportunity to create linear-time algo-
rithms [17]. Chen et al. [17] distinguish three classes of methods solving P7.

Alternating Minimization The Alternating Minimization (AM) optimizes
the loss function alternatively over one of the factors while fixing the other [84,85].
The subproblem solved in each iteration is convex. In particular, each iteration
takes the form,

Lt+1 = arg min
L∈Rn1×k

RΩ(M)−RΩ(LR
T
t ), (4.1)

Rt+1 = arg min
R∈Rn2×k

RΩ(M)−RΩ(Lt+1R
T ), (4.2)

where t denotes the iteration number. A practical extension of AM is Gener-
alized Low-Rank Models (GLRM) [86]. GLRM extends the concept of low-rank
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matrix completion to handle more general data types and provides a flexible ap-
proach for data analysis and machine learning tasks.

Gradient descent methods The second class of non-convex algorithms use
gradient descent methods to solve problem P6 with respect to L and R [83,87,88].
The most straightforward routine is given by

Lt+1 = Lt − τ∇Lf(Lt,Rt), (4.3)
Rt+1 = Rt − τ∇Rf(Lt,Rt), (4.4)

where τ is the stepsize parameter and f(Lt,Rt) =
1
2
∥RΩ(M)−RΩ(LtR

T
t )∥2F .

However, these methods often incorporate different variants of gradient descent,
including projected gradient descent and stochastic gradient descent [88].

Singular value projection The last algorithm group incorporates singular
value projection technique [89, 90]. They are based on the observation that the
singular values of a low-rank matrix decrease rapidly, while the singular values
of a matrix with random entries do not. The non-convex methods have worse
theoretical guarantees for matrix completion. However, they have better running
time and space complexity and are the most popular approach in practice [17].

4.3 Other methods for low-rank matrix
completion

Classical optimisation methods are not the only approach to solving low-rank
matrix completion problems. While these methods are commonly used and have
proven to be effective, a variety of methods are described in the literature.

Iterative SVD Troyanskaya et al. [91] proposed an expectation maximization,
iterative algorithm, which at iteration t replaces missing values from the truncated
SVD of the matrix from previous iteration t − 1. It is noted that the number of
the largest singular values used in the reconstruction needs to be determined
empirically.

Riemannian optimization methods Riemannian optimization techniques pro-
vide a robust framework for matrix completion problems and can be used when
the rank of M is known. Those consider the underlying manifold structure and
leverage techniques from differential geometry to improve optimization efficiency
and convergence properties [92–95]. Much research has been dedicated to the MC
algorithms which perform optimization over the Grassmannian manifold [96,97].
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Active sampling methods In machine learning, adaptivity refers to the abil-
ity of a model or algorithm to adjust its behaviour based on the observed data.
It involves dynamically updating the model or algorithm as new information be-
comes available, allowing it to improve its performance or adapt to changes in
the underlying data distribution. Incorporating adaptivity into low-rank matrix
completion enables the model to handle dynamic data, adapt to changes, and
improve the accuracy of the completion process over time. It allows the system
to continuously learn and update its predictions, making it more robust and ap-
plicable in real-world scenarios where the data distribution is not static. Active
sampling methods for matrix completion aim to select the most informative en-
tries to observe in a partially observed matrix, seeking to maximise the completion
process’s accuracy. Instead of passively relying on randomly observed entries, ac-
tive sampling methods actively choose which entries to observe based on specific
criteria or strategies [98–100]. Active sampling methods can significantly reduce
the observations required for matrix completion, making them particularly useful
when observations are costly or time-consuming.

Bayesian methods Bayesian methods model the uncertainty in the missing
entries and use Bayesian inference techniques to estimate the low-rank matrix
[101–103]. Markov Chain Monte Carlo (MCMC) algorithms are often employed
for sampling the posterior distribution [104, 105]. Bayesian methods offer a prin-
cipled framework for low-rank matrix completion, allowing for the incorporation
of prior knowledge, modelling uncertainty, and quantifying uncertainty. However,
implementing Bayesian methods can be computationally demanding, especially
for large-scale problems.

Inductive matrix completion Inductive matrix completion refers to the task
of completing a partially observed matrix by leveraging additional information
or side information that is available during both the training and testing phases
[48,106,107]. It extends the traditional matrix completion problem, which focuses
on recovering missing entries based solely on observed entries in a matrix. The side
information can take various forms depending on the specific task and domain. It
can include features associated with the rows or columns of the matrix, metadata
about the entities represented in the matrix, temporal or spatial information, or
any other relevant information that can provide clues for completing the matrix.

Low-rank matrix completion refers to estimating or recovering a low-rank ma-
trix from a subset of its entries. All methods discussed in this chapter can be
successfully employed in the matrices that can be well-approximated by a matrix
with a low rank. In cases where the matrix does not exhibit a clear low-rank
structure, a high-rank matrix completion should be considered. However, those
methods are more challenging, as they require estimating more parameters with-
out the benefit of low-rank constraints.
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The formulation of the matrix completion problem can vary depending on the
noise level in the data. For the noiseless scenario, exact matrix completion should
be applied, while inexact matrix completion will handle noisy data.
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Chapter 5

Nuclear norm based matrix
completion

Nuclear norm minimization is a well-known and widely studied technique for low-
rank matrix completion. It has gained popularity due to its convex formulation,
theoretical guarantees, and good empirical performance. Besides matrix comple-
tion, the nuclear norm has several applications in various fields, including data
compression, denoising, and dimensionality reduction. Robust Principal Compo-
nent Analysis (RPCA) is a technique that separates a given matrix into a low-
rank component and a sparse component. The nuclear norm plays a crucial role in
RPCA by promoting low-rank while the ℓ1-norm encourages sparsity in the sparse
component [108,109]. RPCA has applications in video surveillance, image process-
ing, and anomaly detection. Nuclear norm can also be applied in system identifi-
cation problems, where the goal is to estimate the underlying dynamics of a system
from observed input-output data. By promoting low-rank solutions, nuclear norm
regularization helps identify systems with structured dynamics [110,111]. Recent
applications in signal processing include phase retrieval [112–114], which aims to
recover the phase information of a signal or an image from only its magnitude
measurements.

In this chapter, we discuss two nuclear norm based algorithms for the matrix
completion problem - exact nuclear norm minimization as Semidefinite Program-
ming (SDP) and Proximal Gradient Descent for inexact matrix completion. In
the last section, we discuss theoretical guarantees for nuclear norm based matrix
completion. If the matrix satisfies certain incoherence, and the observed entries
are sampled uniformly at random, nuclear norm minimization can recover the ac-
tual low-rank matrix with high probability. These theoretical guarantees provide
confidence in the effectiveness of the approach.
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5.1 Nuclear norm minimization as Semidefinite
Programming

Fazel [25, 115] introduced the concept of using the nuclear norm as a convex
relaxation for the rank function in matrix completion. The formulation of the nu-
clear norm minimization as a Semidefinite Programming (SDP) problem involves
introducing two auxiliary positive semidefinite matrix variables W1 ∈ Rn1×n1 ,
W2 ∈ Rn2×n2 . By incorporating these variables, the problem can be cast as an
optimization problem that can be solved using SDP techniques. Fazel used the
following formula for the nuclear norm in her seminal work,

∥X∥∗ = min
W1,W2

{
1

2
Tr(W1) +

1

2
Tr(W2)

∣∣∣∣∣
(
W1 X
XT W2

)
⪰ 0

}
(5.1)

Hence, the problem P2 is equivalent to

∣∣∣∣∣∣∣∣∣
minimize ∥X∥∗
s.t. Xij = Mij for (i, j) ∈ Ω,(

W1 X
XT W2

)
⪰ 0,

(P8)

considered in [25]. The problem P8 can be solved with the off-the-shelf semidef-
inite programming solvers. Those solvers employ interior point methods (Se-
DuMi [116], SDPT3 [117], and MOSEK [118], or first-order methods (SCS [119]).
However, using off-the-shelf SDP solvers for matrix completion problems can face
several challenges and limitations. SDP solvers typically have high computational
complexity, making them less efficient for large-scale matrix completion prob-
lems. As the problem size increases, SDP solvers’ computation time and memory
requirements can become prohibitive.

5.2 Proximal Gradient Descent for inexact
matrix completion (Soft-Impute)

To overcome discussed challenges, researchers have developed specialized algo-
rithms and techniques that exploit the specific characteristics of matrix comple-
tion problems. One such method is Proximal Gradient Descent (PGD). PGD
is an optimization algorithm for solving convex optimization problems, particu-
larly in cases where the objective function consists of a smooth and a nonsmooth
term [120]. It is an extension of the standard gradient descent method incorpo-
rating a proximal operator.

38



Definition 5.2.1. The Proximal Operator (or Proximal Mapping) of the convex
function h from Hilbert space to R is defined as,

proxh(x) = argmin
z∈X

[
h(z) +

1

2
∥z − x∥22

]
. (5.2)

In the context of the iterative optimization methods, it is often evaluated on
function h̃ := τh, where τ > 0 is a parameter representing the stepsize, and
formulated as,

proxτh(x) = argmin
z∈X

[
h(z) +

1

2τ
∥z − x∥22

]
. (5.3)

The general form of a convex optimization problem that can be solved using
PGD is,

f(x) = g(x) + h(x), (5.4)

where g is convex and differentiable, and h is convex and possibly non-differentiable,
but with the easy to compute proximal operator [121].

The Proximal Gradient Descent (PGD) method et each iteration t, sets

x(t) = proxτth(x
(t−1) − τt∇g(x(t−1))), (5.5)

where τt > 0 is a stepsize at the iteration t = 1, · · · , T , where T is the maxi-
mum iterations number.

The PGD uses a quadratic approximation of the smooth part g to define a
step towards the minimum value, with the update rule

x(t) = argmin
z

[
h(z) +

1

2τt
∥z − (x(t−1) − τt∇g(x(t−1)))∥22

]
. (5.6)

The first term is minimized when the value of h is as small as possible, and
the second term is minimized z is close to the gradient update of the smooth part
g.

Proximal gradient descent has proven to be particularly useful in problems with
sparsity-inducing regularization terms. It has been successfully applied in various
fields, including compressed sensing, machine learning, and signal processing.

To apply PGD to the inexact matrix completion defined optimization problem
P4 in Section 4.1, we need to decompose the objective function f : Rn1×n2 → R
into

f(X) =
1

2
∥RΩ(X)−RΩ(M)∥2F︸ ︷︷ ︸

g(X)

+λ∥X∥∗︸ ︷︷ ︸
h(X)

. (P9)
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Function g(X) : Rn1×n2 → R is smooth, with gradient equal to

∇g(X) = −(RΩ(M)−RΩ(X)). (5.7)

The analytical form of the proximal operator is given by the Singular Value
Thresholding (SVT) operator [18, 27]. The operator bases on the SVD of the
matrix, but controls the rank of the output matrix by nullifying singular values
smaller than given threshold value λ. For X with the SVD given by

X = UxΣxV
T
x , (5.8)

the SVT is defined as follow,

Dλ(X) =
r∑
i=1

u′
iv

′T
i (σ′

i − λ)+, (5.9)

where v′
i are left singular vectors of X associated with non-zero singular values

σ′
i for i = 1, . . . , r, u′

i.
Following lemma provides the explicit formula for the PGD for the problem

P9 [27,122].

Lemma 5.2.1. Proximal operator for the function h : Rn1×n2 → R defined as

h(X) = λ∥X∥∗, (5.10)

proxτh(X− τ∇g(X)) = Dλ(X+ τ(RΩ(M)−RΩ(X))) (5.11)

Since ∇g(X) is Lipshitz continuous with the Lipshitz constant L = 1, we can
choose fixed step size τt = 1 for every iteration t = 1, · · · , T . Since

X−RΩ(X) = RΩ⊥(X) (5.12)

where Ω⊥ follows the Definition 2.0.2.
The update step of the PGD algorithm has the form,

Xτ+1 = Dλ(RΩ(M) +R⊥
Ω(X

τ ))) (5.13)

The PGD for the regularized matrix completion problem was firstly used by
Mazumder et al. [27] with the iterative procedure called Soft-Impute.
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5.3 Guarantees for the Nuclear Norm
Minimization based Matrix Completion

Convex matrix completion methods, which use nuclear norm minimization, of-
fer strong theoretical guarantees. Under certain conditions, convex methods can
provably recover the exact low-rank matrix with a high probability. Candes and
Recht [26] provided guarantees for the matrix completion problem which relied
on the three assumptions:

1. M has a low rank,

2. entries of M are observed uniformly at random,

3. singular vectors of M are uncorrelated with the standard basis vectors (M
is incoherent).

In further work, Candes and Tao [123] improved the assumptions about the
required number of the observed entries. Matrix completion theory was then
greatly simplified by Recht [15] and Gross [16] by changing the assumptions about
the sampling schema. Instead of sampling the whole set of known entries, each
entry was sampled uniformly with replacement.

In this chapter, we discuss theoretical guarantees provided by Recht [15]. We
begin with the definition of the matrix coherence.

5.3.1 Matrix coherence

The coherence parameter reflects the extent to which the singular vectors of the
matrix are spread out over many rows or columns [3]. The matrix with the low
value of the coherence parameter is said to be incoherent. Coherence is a useful
measure, which provides insights into the difficulty of matrix completion problems.
Incoherent matrices are more amenable to recovery using techniques such as nu-
clear norm minimization or low-rank matrix factorization [18, 85]. Conversely,
coherent matrices may pose challenges and require more sophisticated algorithms
or additional assumptions for successful completion.

Let us now revisit the Netflix Prize example discussed in Section 2.2. Let

M =
r∑
i

σiuiv
T
i . (5.14)

Suppose the uj tells how much j-th latent factor is important to the users, and
vj contains information on how this factor characterizes each of the movies. The
matrix σjujvTj represents the contribution of the j-th factor to movie rates of all
users. If vector uj equals to the standard basis vector, it means that j-th factor
affects only one of the users and the contribution matrix can not be recovered
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unless we sample all entries from the first row. This motivates the definition of
the coherence which measures how much the singular vectors are correlated with
the standard basis [26,123].

Definition 5.3.1. Let U be a subspace of Rn of dimension rU and PU be the
orthogonal projection onto U . The coherence of U is defined as

µ(U) =
n

rU
max
1≤i≤n

||PUei||22, (5.15)

where ei for i = 1, · · ·n are the standard basis vectors of Rn.
The coherence parameter of the rank-r̃ matrixX is given by µ0(X) = max{µ(U), µ(V )}

where U and V are the linear spaces spanned by its r̃ left and right singular vectors
respectively.

The coherence of the rU -dimensional subspace is bounded according to the
following lemma [3,17,18].

Lemma 5.3.1. Let U be the rU -dimensional subspace of Rn, then 1 ≤ µ(U) ≤ n
rU

.

Proof. To show the upper bound,

µ(U) =
n

rU
max
1≤i≤n

||PUei||22 ≤
n

rU
||ei||22 =

n

rU
. (5.16)

The upper bound is achieved when ej ∈ U for some j ∈ {1, · · · , n}.
To show the lower bound,

n∑
i

||PUei||22 = rU . (5.17)

Thus, µ(U) ≥ 1. The lower bound is achieved if U is spanned by rU vectors
( 1√

n
, · · · , 1√

n
).

To illustrate the role of the incoherence in the matrix completion, let us con-
sider an orthogonal decomposition of the linear space of matrices Rn1×n2 into two
subspaces T and T⊥, determined by the matrix M,

Rn1×n2 = T ⊕ T⊥. (5.18)

The projector operators onto T and T⊥ were introduced by Candes and Recht
[26] and play a crucial role in understanding the theoretical guarantees of the
matrix completion problem [15,16,26].
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(a) µ(U) = 1. (b) 1 < µ(U) < 2 (c) µ(U) = 2

Figure 5.1: Coherence of the one-dimensional subspace U ⊂ R2. 5.1a depicts U
spanned by ( 1√

2
, 1√

2
) with the smallest coherence µ(U) = 1, while 5.1c presents U

spanned by one of the standard basis vectors e2 which achieves maximal coherence
µ(U) = 2

T

σi

σr

T⊥

n1

n2

r

n1 − r

r n2 − r

Figure 5.2: The decomposition of Rn1×n2 determined by the SVD of M. Any
matrix in T⊥ has rows perpendicular to the left singular vectors and columns
perpendicular to the right singular vectors of M (dim(T⊥) = (n1 − r)(n2 − r).

Definition 5.3.2. Let T be the subspace of Rn1×n2,

T = span{uivTj | 1 ≤ i ≤ r or 1 ≤ j ≤ r or both} (5.19)

Then

T⊥ = span{uivTj | r + 1 ≤ i ≤ n1 and r + 1 ≤ j ≤ n2}. (5.20)

The dimension of dim(T⊥) is equal to (n1 − r)(n2 − r) and dim(T ) = r(n1 +
n2 − r). The definition implies that any X ∈ T⊥ has rows perpendicular to the
left singular vectors of M and columns perpendicular to the right singular vectors.
The representation of the discussed decomposition is shown in Fig. 5.2) and was
adopted from work of Gross [16].

To build some intuition behind discussed concepts, let us consider completion
of a matrix
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M =

(
2 2
0 0

)
, (5.21)

with SVD,

M =

(
1 0
0 1

)
︸ ︷︷ ︸

U

(
2
√
2 0

0 0

)
︸ ︷︷ ︸

Σ

(
1√
2

1√
2

− 1√
2

1√
2

)
︸ ︷︷ ︸

VT

. (5.22)

In accordance with the definition 5.3.1 and the lemma 5.3.1, M achieves the
maximal coherence equal to 2, since the columns of U are the standard basis
vectors e1 = (1, 0) and e2 = (0, 1).

The rank-one matrices u1v
T
1 ,u1v

T
2 ,u2v

T
1 ,u2v

T
2 constitute the orthonormal ba-

sis of the R2×2. The space T is spanned by the following matrices

T = span
{( 1√

2
1√
2

0 0

)
︸ ︷︷ ︸

u1vT1

,

(
− 1√

2
1√
2

0 0

)
︸ ︷︷ ︸

u1vT2

,

(
0 0
1√
2

1√
2

)
︸ ︷︷ ︸

u2vT1

}
, (5.23)

and

T⊥ = span
{(

0 0
− 1√

2
1√
2

)
︸ ︷︷ ︸

u2vT2

}
. (5.24)

Suppose, we know all of the entries of M except the one in the upper right
corner,

(
2 ?
0 0

)
, (5.25)

thus Ω = {(1, 1), (1, 2), (2, 2)}. We would like to recover M with the nuclear
norm minimization. Any feasible X consistent with the observation set, can be
parameterized as

X =

(
2 x
0 0

)
. (5.26)

In particular, the second row of X is a vector (0, 0). Let α1, α2, α3, α4 be the
coefficients of the matrix X with respect to the basis u1v

T
1 ,u1v

T
2 ,u2v

T
1 ,u2v

T
2 .
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Figure 5.3: Completion of the matrix M =
(
2 2
0 0

)
, when three entries are known

M =
(
2 ?
0 0

)
. Any feasible X belongs to the linear space spanned by u1v

T
1 ,u1v

T
2 .

The dotted lines denote a feasible set for the optimization problem and the violet
line denotes the set of the matrices with the same nuclear norm as M belonging
to the two-dimensional subspace span{u1v

T
1 ,u1v

T
2 }.

Thus, α3 = α4 = 0. As a consequence, X belongs to the linear space spanned
by u1v

T
1 ,u1v

T
2 . Fig. 5.3 presents the projection of the matrix M onto subspace

spanned by u1v
T
1 and u1v

T
2 . The dotted lines denote a feasible set for the opti-

mization problem and the violet line denotes the set of the matrices with the same
nuclear norm as M belonging to the two-dimensional subspace span{u1v

T
1 ,u1v

T
2 }.

We can see that M is not the only, feasible solution to the optimization problem
P2.

5.3.2 Theoretical guarantees for matrix completion

A strong theoretical foundation makes nuclear norm minimization the most de-
veloped and well-understood method. It has been shown that under certain con-
ditions, matrix completion problems can be efficiently solved by minimizing the
nuclear norm of the matrix. The following theorem is derived from the work of
Recht [15] and defines minimal assumptions about the low-rank matrix M.

Theorem 5.3.1 (Theorem 1.1 in [15]). Let M be a n1×n2 matrix of rank r with
the singular value decomposition UΣVT . Without a loss of generality, impose the
conventions n1 ≤ n2, Σ is r × r, U is n1 × r and V is n2 × r. Assume that

1. µ0(M) is the coherence of M.

2. The matrix UVT has maximum entry bounded by µ1

√
r

n1n2
in absolute value

for some µ1 > 0.
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Suppose that m entries of M are observed with locations sampled uniformly
with replacement at random. Then if

|Ω| ≥ 32max[µ2
1, µ0(M)]r(n1 + n2)β log

2(2n2) (5.27)

for some β ≥ 1, the minimizer to the problem

∣∣∣∣∣minimize ∥X∥∗
s.t. Xij = Mij for (i, j) ∈ Ω

(5.28)

is unique and equal to M with probability at least 1−6 ln(n2)(n1+n2)
2−2β−n2−2β

1/2

2

The convex optimization, which is based on nuclear norm minimization is the
most developed and understood. There are several factors behind the success of
the matrix recovery. The key properties include the number and distribution of
observed entries, matrix rank and incoherence parameter. When these conditions
are satisfied, nuclear norm minimization can recover the original low-rank matrix
accurately. For the non-convex alternating minimization, Jain et al. [84] and Hardt
[85] gave provable guarantees. However, these guarantees require low coherence,
rank and condition number of M, i.e. the coherence must be lower. The nuclear
norm minimization can be formulated as SDP and solved with off-the-shelf solvers.
However, those solvers are often not accessible for large-scale problems. Thus
many first-order methods including Proximal Gradient Descent (PGD) have been
developed.
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Chapter 6

Column Subset Selection

Low-rank models play a significant role in various fields, including machine learn-
ing, data analysis, and signal processing. These models base on approximating
data by a low-rank matrix, thereby capturing the most important information or
structure while reducing dimensionality. We have already discussed their applica-
tion to the matrix completion task and collaborative filtering. More broadly, these
models enable effective data visualization, feature extraction, and compression by
approximating high-dimensional data with a low-rank representation. They help
in reducing noise, redundancy, and computational complexity. However, such
models may lack interpretability. The derived latent factors or components might
not have clear and intuitive interpretations, making it challenging to interpret
and extract meaningful insights from the model. For this reason, much research
has been directed into creating the low-rank representation using original data
points. In this chapter, we discuss two such models. Column Subset Selection
(CSS) provides such representation using the column submatrix of the data matrix
M ∈ Rn1×n2 . On the other hand, CUR decomposition explicitly selects a subset
of columns and rows from the original matrix to construct the factorization. In
both problems, the crucial step is the selection of a column (or row). Fortunately,
for incoherent matrices, uniform sampling is an effective strategy [13, 37]. This
considerably increases computational efficiency. Moreover, it is handy in the setup
with missing entries in the original matrix. This chapter discusses the role of CSS
and CUR in the matrix completion task.

6.1 Column Subset Selection problem

Column Subset Selection (CSS) problem aims to identify the most relevant and
informative subset of columns from a given matrix M ∈ Rn1×n2 [124]. In machine
learning, CSS can serve as an unsupervised feature selection algorithm. In many
real-world applications, datasets often contain numerous features, but not all con-
tribute significantly to the predictive task. Moreover, having many irrelevant or
redundant features can introduce noise, increase computational complexity, or
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lead to overfitting. CSS addresses this task by selecting the d columns with cap-
ture as much of M as possible in terms of spectral or Frobenius norm [35, 125].
Formally, given a matrix M ∈ Rn1×n2 and positive integer d, CSS seeks for the
column submatrix C ∈ Rn1×d such that

∥M− PC(M)∥ξ (6.1)

is minimized over all possible
(
n2

d

)
choices for the matrix C. Parameter ξ ∈

{2, F} ξ = 2 denotes spectral or ξ = F is the Frobenius norm. Here,

PC = CC†, (6.2)

is the projection onto the d-dimensional space spanned by the columns C. The
C† denotes Moore-Penrose pseudoinverse from the Definition 2.0.11. The Moore-
Penrose pseudoinverse, named after E. H. Moore and Roger Penrose, generalises
the matrix inverse for not invertible matrices.

Considerable attention has been given to researching column subset selection
methods [126–130]. It has been demonstrated that Rank Revealing QR (RRQR)
is nearly optimal for addressing the Column Subset Selection problem and is
the basis for many CSS algorithms [126,127]. On the other hand, sampling-based
approaches [128–130] attempt to choose columns by randomly selecting from a set
of distributions across all columns of an input matrix. If the sample distribution
is appropriately chosen, these algorithms are substantially faster than RRQR
and achieve comparable performance [129, 130]. The sampling methods include
uniform sampling, l2-norm sampling and leverage scores based sampling.

6.2 CUR factorization

CUR factorization is closely related to the column subset selection problem. CUR
factorization is a matrix factorization technique that approximates a given matrix
into the product of three matrices: C, U, and R. There are several formulation
of CUR decomposition [33,131,132] including following,

X ≈ CU†R, (6.3)

where U† denotes Moore-Penrose pseudoinverse of U C and R are column
and row submatrices of X, and U is the intersection submatrix of C and R.
Hamm proves that once the rank of U is equal to the rank of X, CUR is an exact
factorization [33].

CUR factorization provides a low-rank approximation of the original matrix
while retaining important structural properties. The advantage of CUR factor-
ization lies in its ability to offer a low-rank approximation of the original matrix
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while using a subset of its columns and rows [33, 36, 133, 134]. This can be ben-
eficial for reducing the dimensionality of the data, compressing information, or
extracting essential features. Factorization can be used in various applications
such as dimensionality reduction, collaborative filtering, and system identifica-
tion [109, 135, 136]. CUR factorization provides a more interpretable represen-
tation of the data compared to Singular Value Decomposition (SVD), Principal
Component Analysis (PCA) or Non-negative Matrix Factorization (NNMF). The
C matrix in CUR consists of selected columns from the original matrix, which
directly corresponds to the meaningful features or attributes in the data. This
makes it easier to understand and interpret the results in terms of the original
variables. In CUR factorization, the C matrix represents the selected subset of
columns, which directly relates to the column subset selection problem. The goal
is to choose informative, relevant, or important columns accurately representing
the original matrix.

6.3 CSS, CUR, and low-rank matrix completion

In the context of the matrix completion, two fundamental questions may be posed
about CSS and CUR. Firstly, how to select meaningful columns (or/and rows)
when only a subset of its entries is observed. Regarding the fully-observed input
matrix, both problems have been researched extensively [33,36,133,134]. However,
observing all matrix entries is frequently difficult or even impossible. For the ge-
netic variation identification challenge, for instance, obtaining the complete DNA
sequences of an entire population could be costly and time-consuming [137]. The
second question concerns the application of CSS and CUR in matrix completion
problems.

For the incoherent matrices, uniform sampling is an effective strategy [13,37].
Wang and Singh [137] discuss the limitation of the existing sampling schemes for
the coherent matrix design and use active sampling schemes as a remedy. This
strategy dynamically adjusts the selection of columns based on the information
gained during the sampling process. It uses the estimated importance scores to
iteratively select additional columns likely to contribute the most valuable infor-
mation. By adopting the column subset selection process based on the knowledge
gained during the sampling and evaluation stages, an adaptive sampling strategy
can lead to a more efficient and effective selection of columns. It allows for a tar-
geted exploration of the column space, focusing on the most informative columns
while avoiding redundancy or irrelevant features. Such strategies can be beneficial
in scenarios where the data distribution or characteristics change dynamically, as
they can adapt to the evolving requirements of the problem.

Adaptive column sampling helps to tackle the completion of matrices which
do not meet assumptions of the Theorem 5.3.1. Krishnamurthy and Sin designed
adaptive sampling algorithms to complete and find a low-rank approximation
of highly coherent matrices [98, 100]. This approach also diminishes the sample
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complexity of the problem, i.e. the cardinality of the Ω set. The algorithm actively
selects columns to observe fully, achieving better sampling complexity than passive
sampling frameworks. In [138], authors propose a two-phased matrix completion
algorithm based on the leverage scores. In the first phase, the algorithm estimates
leverage scores based on uniform sampling. Each matrix entry is sampled in the
second phase according to the estimated row and column leverage score. After the
resampling matrix is completed using the nuclear norm minimization approach.

In [37], authors present the CUR++, the algorithm for partially observed ma-
trices. Low-rank approximation of the matrix is computed based on the randomly
selected columns and rows and a subset of observed entries. The findings and con-
clusions of this paper played a pivotal role in our research for two reasons. Firstly,
the authors show that under assumptions about matrix incoherence, a high-quality
column subset can be obtained by sampling each column uniformly at random.
Secondly, the authors formulate the least squares optimization problem for the
matrix recovery based on the fully observed columns and rows.

In [13], authors demonstrate the potential of the CUR factorization in low-
rank matrix completion. They introduce a new sampling strategy and non-convex
Iterative CUR completion algorithm. The so-called Cross-Concentrated Sampling
bridges uniform sampling and CUR sampling and offers additional flexibility that
may reduce sampling costs potentially. The authors provide provable guarantees
for matrix completion with Cross-Concentrated Sampling.

The Column Subset Selection and CUR matrix decomposition provide a low-
rank approximation of the original matrix while explicitly selecting a subset of
columns (or columns and rows). Interpretability and computational efficiency
have contributed to their popularity and adoption in various domains. They
have data compression, feature selection, system identification, and machine learn-
ing applications. The decomposition quality is determined by the columns (and
row) subset selection. The vast amount of conducted research refers to the fully-
observed matrices and may be impractical in real-data applications. Incorporat-
ing matrix completion algorithms into the column subset selection process can
enhance the selection of informative columns by considering the missing entries
and utilizing the information provided by the observed entries.

There is a shortage of studies integrating column subset selection with matrix
completion. Several researchers, ourselves included, have recognized the need to
address the research gap between column subset selection and matrix comple-
tion. The connection between CUR/CSS and matrix completion lies in the fact
that both techniques can be used for data approximation. Matrix completion
can be seen as a way to fill in missing entries of a matrix, which approximates
the complete matrix. CUR decomposition, on the other hand, provides a low-
rank approximation of a given matrix by selecting a subset of columns and rows.
Sometimes, matrix completion algorithms can leverage the CUR decomposition
or CSS problem. In the application discussed in the literature, modification of
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the sampling pattern allowed to completion of highly coherent matrices or reduced
sampled complexity of the problem. Depending on the problem characteristic pas-
sive or active sampling schemes can be employed. This combination of CUR/CSS
decomposition and matrix completion can improve results in scenarios with miss-
ing data and low-rank structure.

The CUR and CSS may reduce the problem size in matrix completion methods
by only considering a smaller set of columns for the matrix completion task [13,
109]. The next chapter introduces Column Selected Matrix Completion (CSMC).
CSMC selects a representative subset of columns to reduce the computational
complexity and memory requirements of the problem.
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Chapter 7

Matrix Completion using Column
Subset Selection

This chapter introduces a novel method for the low-rank matrix completion prob-
lem, which we call Column Selected Matrix Completion (CSMC). The CSMC
draws inspiration from the broad techniques in the literature discussed in chapters
5 and 6. In particular, it employs the Column Subset Selection (CSS) algorithms
to reduce the size of the matrix completion problem. Recovering the most impor-
tant columns considerably limits the computational costs of the matrix completion
task.

In the CSMC, the completion of the matrix M ∈ Rn1×n2 is divided into two
stages. In the first stage, CSMC selects the subset of d columns and fills it with
an established matrix completion algorithm. In the second stage, the entries
recovered in the first stage and previously known entries are used to recover M.
This is done by solving the standard least squares problem.

The motivation behind the second stage is that if C is a solution to the Column
Subset Selection problem, then

M ≈ CC†M, (7.1)

with respect to the Frobenius or spectral norm, where C† denotes Moore-
Penrose pseudo-inverse (Definition 2.0.11).

The CSMC tackles the task of filling thick (n1 << n2) or thin (n1 >> n2) ma-
trices. Our analysis is focused on the case when M is thick. The recovery of the
thin matrix can be reduced to the recovery of a thick matrix using the transpose
operator. Thick matrices are encountered in various tasks, including image recog-
nition, natural language processing, and speech recognition. The Netflix Prize,
discussed in Chapter 3, is an example of a thick matrix completion problem. The
number of users is significantly bigger than the number of movies.

By selecting the informative columns, CSMC reduces the problem’s dimension-
ality and improves the completion process’s efficiency. Thus, this strategy allows
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the application of Semidefinite Programming (SDP) solvers for larger matrices.
It addresses computer memory limitations.

The least squares problem is a widely used technique in machine learning, par-
ticularly for regression problems. Leading researchers has extensively worked on
it and developed many efficient algorithms to solve it. Randomized linear algebra
methods involve sampling techniques or matrix sketching, making them suitable
for large-scale problems [30,139–142]. On the other hand, the least squares prob-
lem can be solved with iterative methods, including stochastic gradient descent
(SGD). At each iteration, SGD uses only a subset of the data (one sample or a
mini-batch). Thus it is suitable for large-scale problems where calculation of the
gradient over the entire dataset may be computationally expensive [142–148].

The success of our CSMC depends on several factors. The column submatrix
matrix must meet the assumptions of the matrix completion (MC) algorithm used
in the first stage, including rank condition, sampling pattern and number of ob-
servations. Here, we consider nuclear norm based algorithms, whose theoretical
guarantees additionally depend on the coherence parameter. When the column
submatrix C ∈ Rn1×d selected according to the uniform distribution, the desired
properties are preserved [109]. Secondly, a subset of columns from the matrix
M must capture the essential information needed to complete the matrix. Fortu-
nately, when a matrix is incoherent, uniform sampling is an effective strategy [37].

Our approach takes inspiration from the work of Xu et al. [37] and their
CUR++ algorithm for partially observed matrices discussed in Section 6.3. To
obtain a low-rank approximation, the CUR++ method involves randomly select-
ing rows and columns and a sample of observed matrix entries, which are then
used to solve a linear regression problem. In the case of the low-rank matrices, the
algorithm can serve as the matrix recovery method. However, CSMC differs from
CUR++ in three essential aspects. Firstly, we do not observe whole columns.
Instead, we fill them with a selected matrix completion algorithm. Secondly, re-
covery of M is based only on selected columns, not columns and rows. Finally,
CUR++ requires finding singular vectors of column and row submatrices. CSMC
does not and thus limits computational burden.

Our work is also closely related to the other method discussed in Section
6.3, i.e. Matrix Completion with Cross-Concentrated Sampling (MCCCS). The
MCCCS bridges uniform sampling and CUR sampling in matrix completion prob-
lem [13]. The authors of [13] also propose a non-convex iterative scheme (ICURC).
The CSMC leverages their result of how incoherence is transformed into column
(and row) submatrices [13,109]. However, CSMC does not require more observa-
tions on selected columns and rows.

In the following sections, we discuss our CSMC in detail. We introduce three
algorithms implementing the CSMC intending to recover the matrix of the various
dimensions. We also discuss the key aspects that contribute to the algorithm’s
success. Notably, we formulate assumptions underlying the theoretical guarantees
of the CSMC. The notation and definitions are provided in Chapter 2.
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7.1 Column Selected Matrix Completion method
The CSMC is a versatile method for solving matrix completion problems. This
section introduces the algorithms implementing the CSMC method:

1. Column Selected Nuclear Norm (CSNN) in which submatrix is filled
with the exact nuclear norm minimization using SDP solver.

2. Column Selected Proximal Gradient Descent (CSPGD) in which
inexact nuclear norm minimization is solved by Proximal Gradient Descent
(PGD).

3. CSPGD-adam a variant of CSPGD in which the least squares problem is
solved using Adam optimization solver [143].

Each of the presented CSMC methods adopts the following procedure (Fig.
7.1).

Stage I: Sample and fill
In the stage I, the CSMC selects d columns of M ∈ Rn1×n2 according to
the uniform distribution. Let I ⊆ {1, · · · , n2} denote the set of the indices
of the selected columns. The goal of this stage is to recover the submatrix
formed by selected columns, C := M:I , C ∈ Rn1×d using the chosen matrix
completion algorithm.

Stage II: Solve least squares
Let Ĉ ∈ Rn1×d be the output of the Stage I. Now, the CSMC solves the
following convex optimization problem,

min
Z∈Rd×n2

1

2
∥RΩ(M)−RΩ(ĈZ)∥2F , (P10)

where RΩ : Rn1×n2 → Rn1×n2 is the operator following Definition 2.0.3. Let
Ẑ ∈ Rd×n2 be a solution to the problem P10. The CSMC output with the
matrix M̂ = ĈẐ.

The problem P10 is a variant of the least squares problem, which minimize the
sum of the squares over the set of observed entries Ω. It can be efficiently solved
with convex solvers or as a variant of the least squares problem. In Section 7.2,
we conduct an in-depth analysis of the theoretical guarantees for the CSMC.

We will refer as CSMC-α to the CSMC in which in Stage I, the number of
selected columns is given by d = ⌊α · n2⌋, i.e. α denotes the ratio of sampled
columns in the first stage. Algorithm 1 contains the CSMC-α scheme.

Below, we present three algorithms implementing the CSMC method. Those
algorithms employ various optimization solvers depending on the size of the matrix
completion problem.
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Figure 7.1: The CSMC method.

Algorithm 1 CSMC-α
Require: RΩ(M): n1 × n2-matrix
Require: α: Ratio of the selected columns
I ← Uniformly sample α · n2 indices
Cmissing ← RΩ(M):I
Ĉ← MC(Cmissing) ▷ Complete submatrix C ∈ Rn1×d.
Ẑ← arg min

Z∈Rd×n2
1
2
∥RΩ(M)−RΩ(ĈZ)∥2F

M̂← ĈẐ
return M̂
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7.1.1 Column Selected Nuclear Norm (CSNN)

The CSNN is dedicated to recovering the small and medium size M. It inherits
the theoretical guarantees of the SDP solvers.

Stage I: Sample and fill
After selecting the column submatrix C ∈ Rd×n2 , CSNN solves the following
optimization problem,

∣∣∣∣∣minimize ∥Y∥∗
s.t. Yji = Cji for (j, i) ∈ Ω̃,

(P11)

where Ω̃ denote the set of indices of the known entries in C. We found the
first-order Splitting Conic Solver (SCS) as an efficient way to solve the SDP
[149, 150]. SCS employs a first-order algorithm based on operator-splitting
techniques. It solves the dual formulation of the SDP problem, using a
combination of primal and dual variables and applies a fast iterative solver
based on the alternating direction method of multipliers (ADMM) [151].
This approach allows for efficient and scalable solutions to SDP problems.

Stage II: Solve least squares
To find the optimum of the regression problem P10, we directly solve the
least squares for the observed entries in each column. This approach takes
advantage of the explicit form of the cost function as the Frobenius norm.
Solving large-scale linear systems is the core of many scientific and machine-
learning problems. One of the most remarkable recent development in nu-
merical linear algebra is new randomized algorithms that are fast, scalable,
robust, and reliable [30,32,152–156]. This approach is simple and allows to
create fairly efficient distributed implementations. We will refer to this sub-
routine as Direct Least Squares (DLS) (Algorithm 2). Let Ẑ be the output
of the DLS. The CSNN results with M̂ = ĈẐ.

Algorithm 2 Direct Least Squares (DLS) for P10

DECLARE Ẑ : ARRAY[d, n2]
for i = 1, · · · , n2 do

ẑi ← argminz∈Rd×n2
1
2
∥RΩ(M):i −RΩ(Ĉz):i∥22

Ẑ:i ← ẑi
end for
return Ẑ
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7.1.2 Column Selected Proximal Gradient Descent
(CSPGD)

For large-scale problems, we solve the matrix completion problem with the Prox-
imal Gradient Descent method. The CSPGD benefits from sampling a subset of
columns due to the per-iteration cost of the PGD. In the most straightforward
implementation for nuclear norm regularization, the proximal operator involves
performing a singular value thresholding operation, which can be relatively ex-
pensive, especially for large matrices.

Stage I: Sample and fill
Complete the selected column submatrix C by solving following optimiza-
tion problem,

minimize
Y∈Rn1×d

1

2
∥RΩ̃(Y)−RΩ̃(C)∥2F + λ∥Y∥∗. (P12)

The problem is solved by the PGD routine described in Algorithm 3, where
λ is a regularization parameter.

Algorithm 3 Proximal Gradient Descent (Soft-Impute)
1: Require: ϵ: Error tolerance
2: Initialize Y(0) = 0
3: for t = 1, 2, . . . , T do
4: Y(t) ← Dλ(RΩ̃(C) +RΩ̃⊥(Ŷ(t−1)))

5: if ∥(Ĉ(t))−Y(t−1))∥2F
∥Ŷ(t−1)∥2F

≤ ϵ then
6: break
7: end if
8: end for
9: Ĉ← Ŷ(t)

Stage II: Solve least squares
As the CSNN, the CSPGD solves the least squares problem using DLS 2.
Let Ẑ be the obtained minimizer of the problem P10. The CSPGD outputs
with the matrix M̂ = ĈẐ.

7.1.3 Column Selected Proximal Gradient Descent -
Adam (CSPGD-adam))

For large-scale problems, solving the least squares problem with the fast con-
vex solver may be suitable. The CSPGD-adam algorithm solves the problem
P10 using the Adam solver. Adam is an algorithm for the first-order gradient-
based optimization of stochastic objective functions based on adaptive estimates
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of lower-order moments [143]. Adam (short for Adaptive Moment Estimation)
is widely used in machine learning and extends the Stochastic Gradient Descent
(SGD). The primary difference between Adam and SGD is that Adam uses adap-
tive learning rates (stepsize), whereas SGD uses a fixed learning rate (stepsize).
Thus, SGD may lead to slow convergence or overshooting the minimum of the
function. In contrast, Adam dynamically adapts the learning rate for each deci-
sion variable. Additionally, while SGD only uses the current gradient to update
the parameters, Adam uses a moving average of the past gradients to prevent
oscillations. The adaptive learning rates and using past gradients in Adam make
it more robust and efficient than SGD. However, there are cases where SGD can
be more effective.

Stage I: Sample and fill
This stage is the same as in the CSPGD algorithm.

Stage II: Solve least squares
The function f : Rd×n2 → R,

f(Z) =
1

2
∥RΩ(M)−RΩ(ĈZ)∥2F , (7.2)

is minimized using the Adam procedure (Algorithm 4).

Algorithm 4 Adam
Require: τ : Stepsize
Require: β1, β2 ∈ [0, 1) : Exponential decay rates for the moment estimates
Require: ϵ: Small number to avoid zero division error
Require: f(Z): Objective function
Require: Z(0): Initial value of Z
for t = 1, · · · , T do

gt ← ∇f (t−1)(Z(t−1))
ηt ← β1 · ηt−1 + (1− β1) · gt ▷ Update biased first moment estimate
ωt ← β2 · ωt−1 + (1− β2) · g2t ▷ Update biased second raw moment estimate
η̂t ← ηt

(1−βt1)
▷ Compute bias-corrected first moment estimate

ω̂t ← ωt
(1−βt2)

▷ Compute bias-corrected first moment estimate
Z(t) ← Z(t−1) − τ ·η̂t

(
√
ω̂t+ϵ)

▷ Update parameters
end for
return Z(t)

7.2 Formal analysis of CSMC
Theoretical guarantees allow the performance evaluation and bring confidence,
reliability, and problem understanding. In this section, we provide the theoret-
ical guarantees for the CSMC. We perform a formal analysis for each stage of
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the proposed convex CSMC. The goal of this section is to answer the following
questions.

1. Can the uniformly sampled C be correctly recovered by the nuclear norm
minimization algorithm?

2. Is the solution of the least squares problem P10 a good approximation of
the matrix M?

We assume that C ∈ Rn1×d is a column submatrix of M ∈ Rn1×n2 . C is
obtained by sampling uniformly without replacement d columns of M. Let r be
the rank of M and let r̃ be the rank of C. We assume that the compact SVD of
C is given by,

C = ŨΣ̃ṼT, (7.3)

where Ũ ∈ Rn1×r̃, Ṽ ∈ Rn2×r̃, and Σ̃ ∈ Rr̃×r̃.
We denote as µ0(M) and µ0(C) the coherence parameters of M and C. We

also refer to the condition number of M,

κ(M) := ∥M∥2∥M†∥2 =
σmax(M)

σmin(M)
, (7.4)

where σmax(M) and σmin(M) denote maximum and minimum non-zero singular
value of M respectively, and M†Rn2×n1 is a pseudoinverse of M (Definition 2.0.11).

7.2.1 Formal analysis of the first stage of CSMC

To address the first question, it is necessary to understand how the characteristics
of the problem described in Theorem 5.3.1 are transferred to the task of filling in
the submatrix C. These properties include:

1. Matrix rank: C consists of randomly selected d columns of M, the rank
of C, rank of C, denoted as r̃), is bounded by,

r̃ ≤ min{r, d}, (7.5)

where r is the rank of M.

2. Number and distribution of observed entries: The entries of C also
follow uniform distribution, and the expected number of observed entries in
C is equal to

m̃ = |Ω| d
n2

. (7.6)
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3. Matrix coherence Following theorem shows that under certain assump-
tions, the coherence of C bounds depends on the coherence and condition
number of M.

Theorem 7.2.1 (Corollary 3.6 in Cai et al. [109]). Suppose that M ∈ Rn1×n2

has rank r and coherence bounded by µ0(M). Suppose that I ⊆ {1, . . . n2} is
chosen by sampling uniformly without replacement to yield C = M:I . Let d
be the number of sampled columns such that d ≥ 1.06µ0(M)r ln(rn2). Then

µ0(C) ≤ 100κ2(M)µ0(M), (7.7)

with a probability at least 1− 1
n2

, where κ(M) (7.4)denotes condition number
of M.

The following findings enable an examination of the efficiency of Stage I of
CSMC. They demonstrate the transfer of three key features from a matrix com-
pletion task to the task of completing a column submatrix obtained by sampling
uniformly columns of M.

7.2.2 Formal analysis of the second stage of CSMC

In the following analysis of the second stage of CSMC, we assume that submatrix
C is fully observed or perfectly recovered. We focus on the recovery ability of the
least-squares problem in the second stage of the CSMC. In particular, we provide
assumptions implying that solving

min
Z∈Rd×n2

1

2
∥RΩ(M)−RΩ(CZ)∥2F (P13)

will output with Ẑ ∈ Rd×n2 , such that M = CẐ holds with high probability.

The following analysis is guided by the analysis of the CUR+ in the work
of Xu et al. [37]. However, in contrast to CUR+, solving P13 does not require
computing singular vectors of C. The main result of this section is given by the
Theorem 7.2.2. We believe that the following result broadens the result of Xu et
al. formulated as Theorem 2 in [37].

Theorem 7.2.2. Let r be the rank of M ∈ Rn1×n2 and let C ∈ Rn1×d be a column
submatrix of M formed by uniformly sampled without replacement d columns. Let
r̃ denote rank of C. Assume that for the parameter γ > 0,

1. d ≥ 7µ0(M)r(γ + ln r),

2. |Ω| ≥ r̃n2µ0(C)
(
γ + ln (n2r̃

2
)
)
.

61



Let Ẑ ∈ Rd×n2 be the minimizer of the problem P13. Then, with a probability at
least (1− 3e−γ), we have M = CẐ.

We denote as Ũ the subspace spanned by the first r̃ singular vectors of C. The
orthogonal projection onto Ũ is given by

PŨ = ŨŨT . (7.8)

The following lemma can be found in [37] and shows that under the incoherence
assumption, uniform sampling outputs a high-quality solution to the CSS problem,
with high quality.

Theorem 7.2.3 (Theorem 9 in Xu et al. [37]). Let Ũψ denote subspace spanned
by the ψ first singular vectors of C and let PŨψ denote orthogonal projection on
Ũψ. Then for parameter γ > 0, with probability 1− 2e−γ we have

∥M− PŨψM∥
2
2 ≤ σ2

ψ+1

(
1 +

2n2

d

)
, (7.9)

if d ≥ 7µ(Uψ)ψ(γ + lnψ), where d denotes number of sampled columns in C,
σψ+1 is the (ψ + 1)-th largest singular value of M and µ(Uψ) is the coherence of
the subspace spanned by ψ first left singular vectors of M,

The following remark is the immediate consequence of the Theorem 7.2.3.

Remark 7.2.1. Let ψ ≥ r, where r is the rank of M. Then σψ+1 = σr+1 = 0 and
with probability 1− 2e−γ,

∥M− PŨM∥
2
2 = 0, (7.10)

provided that d ≥ 7µ0(M)r(γ + ln r).

We will now bound the distance measured in the spectral norm between M and
M̂ = CẐ. To do that, we will assume that the objective function g : Rr̃×n2 → R,

g(Y) =
1

2
∥RΩ(M)− ŨY∥2F (7.11)

is strongly convex [121], where the strong convexity is defined as follows

Definition 7.2.1. Function g : Rr̃×n2 → R is strongly convex with parameter β
if h(X) = g(X)− β

2
∥X∥2F is convex.

The following remarks provide a helpful characterization of strongly convex
functions.
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Remark 7.2.2. A function g : Rr̃×n2 → R is strongly convex with parameter β if
g is everywhere differentiable and

g(Y) ≥ f(X) + ⟨∇g(X),Y −X⟩+ β

2
∥Y −X∥2F , (7.12)

for any X,Y ∈ Rr̃×n2, where inner product follows Definition 2.0.10.

Remark 7.2.3. If g is twice differentiable, then g(X) is strongly convex with
parameter β if ∇2g(X) ⪰ βI for any X ∈ Rr̃×n2.

We now provide the formula for the first-order and the second-order partial
derivatives of g. Let ysw denote the (s, w) entry of the matrix Y, and mlw denote
(l, w) entry of M then the partial derivative of g with respect to ysw is given by
following formula,

∂g

∂ysw
= −

∑
l:(l,w)∈Ω

(mlw −
r̃∑
i=1

ũliyiw)ũls =
∑

l:(l,w)∈Ω

(
r̃∑
i=1

ũliyiw −mlw)ũls. (7.13)

The second-order partial derivative with respect to ypq and ysw is equal to

∂2g

∂ysw∂ypq
=


∑

l:(l,w)∈Ω
ũlsũlp w = q,

0 w ̸= q.
(7.14)

The following theorem shows that under certain assumptions, M̂ = CẐ is
close to the matrix M in the spectral norm. Those assumptions include that i)
PŨM is close to M, ii) g is strongly convex with β. The following proofs take
inspiration from the work of Xu et al. [37].

Theorem 7.2.4. Suppose that ∥M − PŨM∥22 ≤ ∆ for the parameter ∆ > 0,
and let Ũ be the subspace of Rn1 spanned by the first r̃ singular vectors of C,
PŨ = ŨŨT. Assume that g is strongly convex with a parameter β, then

∥M− M̂∥22 ≤ ∆+
2n1r̃∆

β
. (7.15)

Proof. Set Y1 = ŨTM , then from the assumptions

∥M− ŨY1∥22 ≤ ∆. (7.16)

By remark 2.0.2

1

r′
∥M− ŨY1∥2F ≤ ∥M− ŨY1∥22 ≤ ∆, (7.17)
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where r′ denotes the rank of the matrix (M− ŨY1) ∈ Rn1×n2 and

∥RΩ(M)−RΩ(ŨY1)∥2F ≤ ∥M− ŨY1∥2F ≤ r′∆. (7.18)

Since any of the matrix dimensions bounds rank, r′ ≤ n1 (for thick matrices
n1 < n2)

∥RΩ(M)−RΩ(ŨY1)∥2F ≤ n1∆. (7.19)

Let Ẑ be a solution to the problem P13, then

f(Ẑ) = ∥RΩ(M)−RΩ(CẐ∥2F = ∥RΩ(M)−RΩ(ŨΣ̃ṼT Ẑ∥2F (7.20)

and Ŷ := Σ̃ṼT Ẑ must be a minimum of g. Indeed, assume that g(Y2) < g(Ŷ)
for some Y2 ̸= Ŷ, i.e.

∥RΩ(M)−RΩ(CẐ)∥2F = ∥RΩ(M)−RΩ(ŨŶ)∥2F
> ∥RΩ(M)−RΩ(ŨY2)∥2F
= ∥RΩ(M)−RΩ(CṼΣ̃−1Y2︸ ︷︷ ︸

X2

)∥2F
(7.21)

and f(X2) < f(Ẑ) where f is the objective function in problem P13.
We will bound distance between Y1 and Ŷ using strong convexity of g. Since

Ŷ is minimum of g(Y) (7.11), then ∇g(Ŷ) = 0, and

⟨∇g(Ŷ),Y1 − Ŷ⟩ = 0. (7.22)

Thus, by the Remark 7.2.2,

g(Y1) ≥ g(Ŷ) +
β

2
∥Y1 − Ŷ|2F . (7.23)

Using the definition of g (7.11),

β

2
∥Y1 − Ŷ)∥2F ≤ ∥RΩ(M)−RΩ(ŨY1)∥2F − ∥RΩ(M)−RΩ(ŨŶ)|2F

≤ ∥RΩ(M)−RΩ(ŨY1)∥2F .
(7.24)

Combining (7.24) and (7.19),

∥Y1 − Ŷ∥2F ≤
2

β
∥RΩ(M)−RΩ(ŨY1)∥2F ≤

2n1

β
∆. (7.25)
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Using the triangle inequality and the fact that Frobenius norm of a matrix is
always greater or equal to its spectral norm (Remark 2.0.2),

∥M− M̂∥22 = ∥M−CẐ∥22
≤ ∥M− ŨŨTM∥22 + ∥ŨŨTM−CẐ∥22
≤ ∥M− PŨM∥

2
2 + ∥ŨŨTM−CẐ∥2F .

(7.26)

The first component on the right side is bounded by the assumptions,

∥M− PŨM∥
2
2 ≤ ∆. (7.27)

To bound the second component, we use the definition of the Y1 and Ŷ, and
the fact that the product of the Frobenius norms bounds Frobenius norm of the
two matrices.

∥ŨŨTM− ŨΣ̃ṼT Ẑ∥2F = ∥ŨY1 − ŨŶ∥2F
≤ ∥Ũ∥2F∥Y1 − Ŷ∥2F

(7.28)

Using eq. 7.25 and the fact that ∥Ũ∥F =
√
r̂, since columns of Ũ ∈ Rn1×r̃ are

orthonormal and have length equal to 1.

∥Ũ∥2F∥Y1 − Ŷ∥2F ≤
2n1r̃∆

β
, (7.29)

implying

∥M− M̂∥2F ≤ ∆+
2n1r̃∆

β
. (7.30)

To bound strong convexity, we will use Remark 7.2.3 and bound the smallest
eigenvalue of the Hessian of g. Following [37], to do that, we will use the following
result of Tropp [125].

Theorem 7.2.5 (Theorem 5 in Xu et al. [37] derived from Theorem 2.2 in Tropp
[125] ). Let X be a finite set of the positive-semidefinite (PSD) matrices with
dimension k × k, and suppose that

max
X∈X

λmax(X) ≤ B (7.31)

for some parameter B > 0, where λmax(X) is the maximum eigenvalue of X).
Sample {X1, . . . ,XΨ} uniformly from X without replacement. Compute:
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µmin := Ψλmin(EX1), (7.32)

and

µmax := Ψλmax(EX1), (7.33)

where EX1 is the expected value of a random variable X1, λmax(EX1) and
λmin(EX1) denote its maximum and minimum eigenvalue.

P
(
λmin(

Ψ∑
j=1

Xj) ≤ (1− ρ)µmin

)
≤ k exp

−µmin

B
[(1− ρ) ln (1− ρ) + ρ], (7.34)

for parameter ρ ≥ 0.

Theorem 7.2.6. Let γ > 0 be a parameter. With probability 1 − e−γ we have
that the objective function g : Rr̃×n2 → R defined in (7.11) is β-strongly convex,
provided that

|Ω| ≥ r̃n2µ(Ũ)

(
γ + ln (

n2r̃

2
)

)
. (7.35)

Proof. By remark 7.2.3 to bound strong convexity, we can instead bound the
smallest eigenvalue of the Hessian matrix H = ∇2g.

The Hessian matrix of a function g is a r̃n2 × r̃n2 matrix. Let assume that
second-order derivative with respect to the ysw and ypq entries of matrix Y is the
r̃(s − 1) + w, r̃(p − 1) + q entry of the Hessian matrix. Then using eq. 7.14 the
Hessian matrix H can be written as


H1,1 H1,2 . . . H1,r̃

H2,1 . . . . . . H2,r̃

...
... . . . ...

Hr̃,1 Hr̃,2 . . . Hr̃,r̃

 (7.36)

where Hs,q is a diagonal n2 × n2 matrix containing partial derivatives ∂2g
∂ysw∂ypq

for w, q ∈ {1, . . . , n2}.

Hs,q =



∑
l:(l,1)∈Ω

ũlsũlp 0 . . . 0

0
. . . . . . 0

...
... . . . ...

0 0 . . .
∑

l:(l,n2)∈Ω
ũlsũlp

 (7.37)
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Then the Hessian of g is a sum of the random matrices,

H =
∑

(i,j)∈Ω

ũi:ũ
T
i: ⊗ eje

T
j , (7.38)

where ej ∈ Rn2 is a standard basis vector and ũi: ∈ Rr is a vector defined by the
i-th row of matrix Ũ.

Thus the Hessian of g is a sum of the |Ω| random matrices of the form

Hi,j := ũi:ũ
T
i: ⊗ eje

T
j , (7.39)

where ũi:ũ
T
i: ∈ Rr̃×r̃ is PSD and eje

T
j ∈ Rn2×n2 is also PSD. Thus,

H =
∑

(i,j)∈Ω

Hi,j. (7.40)

Each Hi,j is PSD as the Kronecker product of the two PSD matrices. Moreover,

λmax(H
i,j) = λmax(ũi:ũ

T
i: )

≤ max
1≤j≤r

|uij|2

≤ r̃µ(Ũ)

n1

,

(7.41)

for each i = 1, · · ·n1, j = 1, · · ·n2. Thus,

max
ij

λmax(H
i,j) ≤ r̃µ(Ũ)

n1

. (7.42)

Let (i1, j1) be the first pair of indices in Ω, i.e., the indices of the first observed
entry in M. The expected value of the random matrix Hi1,j1 is given by

E(Hi1,j1) =
1

n1n2

n1∑
l=1

n2∑
q=1

Hl,q

=
1

n1n2

ŨT Ũ⊗ In1×n1

=
1

n1n2

Ir̃×r̃ ⊗ In1×n1

=
1

n1n2

Ir̃n1×r̃n1 .

(7.43)

Following the notation of the theorem 7.2.5,

µmin = |Ω|λmin(E(Hi1,j1)) =
|Ω|
n1n2

, (7.44)
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and

max
ij

λmax(H
i,j) ≤ r̃µ(Ũ)

n1

= B. (7.45)

Combining theorem 7.2.5 with ρ = 1
2

and eq. 7.40

Pr(λmin(H) ≤ 1

2
µmin) ≤ r̃n2 exp

(
−µmin

B

)(
1− ln 2

2

)
≤ rn2

2
exp

(
−µmin

B

)
,

(7.46)

implying,

Pr
(
λmin(H) ≤ |Ω|

2n1n2

)
≤ r̃n2

2
exp

(
− |Ω|
rn2µ(Ũ)

)
, (7.47)

Hence, with probability at least 1− e−γ,

λmin(H) ≥ |Ω|
2n1n2

, (7.48)

provided that

|Ω| ≥ r̃n2µ(Ũ)

(
γ + ln (

n2r̃

2
)

)
. (7.49)

Theorem 7.2.2 can be proved by combining the results of 7.2.4 and 7.2.6.

Proof of Theorem 7.2.2. Since d ≥ 7µ0(M)r(γ+ ln r), from the Remark 7.2.1, we
have

∥M− PŨM∥
2
2 = 0, (7.50)

with the probability at least 1− 2e−γ.
From Theorem 7.2.6, the fact that µ0(C) > µ(Ũ)

and the fact |Ω| ≥ r̃n2µ0(C)
(
γ + ln (n2r̃

2
)
)
, function g is β-strongly convex with

probability at least 1− e−γ.
The probability the fact, that eq. (7.50) holds and g is β-strongly convex is

grater or equal than the product (1− 2e−γ)(1− e−γ).
Thus we can apply 7.2.4 with ∆ = 0 and show that

∥M− M̂∥22 ≤ 0, (7.51)

implying M = M̂ with probability at least (1− 3e−γ).
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This chapter presented the Column Selected Matrix Completion, a two-staged
method for the matrix completion problem. In the first stage, CSMC randomly
selects the column submatrix of M and completes it with the selected MC algo-
rithm. In the second stage, CSMC recovers M by minimizing the least squares
error on the previously observed and filled-in the first stage entries.

This chapter gives a systematic, formal analysis of the CSMC algorithm. We
discuss how the crucial properties of the M are inherited by the uniformly sampled
column submatrix. Those properties include matrix rank, coherence, and the
distribution of the observed entries Ω. This offers valuable insight into the first
stage of the CSMC.

We have also investigated the theoretical guarantees of the second stage of
the CSMC. Here, we assume that we know all of the entries of C. We either
observed them, or we perfectly recovered them in the first stage. The results of
this analysis are provided in Theorem 5.3.1. The underlying assumptions refer to
the rank and the coherence of M, the rank and the coherence of C, the number
of columns in C and the size of Ω. Those results deepen the understanding of the
performance of the CSMC. In particular, the rank and the coherence of C can be
further bounded by the rank and the coherence of M.
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Chapter 8

Numerical evaluation

To evaluate the performance of the proposed Column Selected Matrix Comple-
tion (CSMC) methods, i.e. Column Selected Nuclear Norm (CSNN), Column
Selected Proximal Gradient Descent (CSPGD), and CSPGD-adam, we conducted
numerous experiments on the synthetic data set in a controlled setting. The pri-
mary goal of this chapter is to compare the performance of the CSMC algorithms
with the matrix completion methods based on convex optimization, particularly
nuclear norm minimization with Semidefinite Programming (NN algorithm) and
Proximal Gradient Descent (PGD algorithm). To assess the sample complexity of
the presented methods, i.e. the number of measurements required for the success-
ful completion, we vary the cardinality of the Ω set. We also explore the recovery
ability of CSMC methods depending on the number of sampled columns. More-
over, we benchmark the CSMC and other low-rank matrix completion methods
- Alternating Minimization (AM) and Iterative SVD (ISVD) methods. Finally,
we address the scalability demands and explore the performance of PGD-based
methods for matrices with numerous columns. Since direct least squares might be
slower in this case, we compare CSPGD, PGD, CSPGD-adam, and PGD-adam.

8.1 Implementation overview

The author has developed and released open-source code with CSNN minimiza-
tion algorithm and CSPGD methods. Both algorithms support Numpy arrays
[157] and Pytorch tensors [158]. The latter can benefit from GPU accelera-
tion. The semidefinite programming is solved with the Splitting Conic Solver
(SCS) [119]. The code is written in Python 3.10 and provided in https://github.
com/akrajewska/css-matrix-completion.

All testing examples were implemented in Python 3.10. The related codes are
available at https://github.com/akrajewska/css-matrix-completion/examples.
The Alternating Minimization and Iterative SVD algorithms are taken from the
fancyimpute library and used for benchmarking ( [159]).
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8.2 Experimental setup

8.2.1 Data set

The goal of each experiment was to recover random n1 × n2 matrix M with the
ratio of missing entries ρ. To control its rank r, the test matrix was generated
as a product of the n1 × r matrix A and r × n2 matrix B. Matrices A and B
were generated in two steps. In the first one, matrix entries were sampled from
the normal distribution N (0, 1). In the second step, noise matrices with the ratio
0.3 of non-zero entries were added to each matrix. The M matrix was generated
according to formula 8.1,

M
(n1×n2)

= A
(n1×r)

B
(r×n2)

. (8.1)

Let Ωρ be the set of known indices from Definition 2.0.1 of a the cardinality
ρn1n2 , and RΩρ follow Definition 2.0.3. The input matrix RΩρ(M) was generated
randomly. The entries of M with indices outside the set Ωρ were set as null values.
Experiments were conducted on the three types of data sets with a dimension
(n1, n2) equal to (300×1000), (2000×3000) and (600×10000) and maximal rank
r ∈ {5, 10, 15, 25, 50}. Each trial of the experiments was run on a different test
matrix.

8.2.2 Experimental procedures

We conducted four series of experiments to investigate the performance of matrix
completion methods on both smaller and larger problem sizes. These experiments
aimed to compare the effectiveness and efficiency of matrix completion techniques
under different problem-size scenarios. S I and S II were conducted on the data set
of smaller matrices. In S III and S IV, we focused on larger datasets to investigate
the scalability and performance of the presented method on more substantial
problem sizes.

Experiment S I The goal of the first experiment was to compare the CSNN-
α for α ∈ {0.1, · · · , 0.9} algorithm and the exact Nuclear Norm minimization
(NN) algorithm. Each experiment run was conducted on the randomly gen-
erated M ∈ R300×1000 under one of the rank settings r ∈ {5, 10}. To assess
the sample complexity of the algorithms, we varied the ratio of known entries
ρ ∈ {0.4, 0.3, 0.2, 0.1}. Every setup was executed overNtrial = 20 independent trial
runs. The performance of the algorithms NN and CSNN-α, α = {0.1, · · · , 0.9}
was evaluated over all trials.

Experiment S II The goal of the second experiment was to benchmark CSNN-
α for α ∈ {0.1, · · · , 0.5} algorithm, Matrix Factorization [83, 87, 88], Iterative
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SVD [91], and exact Nuclear Norm minimization (NN). As in Experiment S I,
each experiment run was conducted on the randomly generated M ∈ R300×1000

under one of the rank settings r ∈ {5, 10}. The ratio of known entries ρ was taken
from the set {0.2, 0.1}. Every setup was executed over Ntrial = 20 independent
trial runs.

Experiment S III In the third scenario, we evaluated the sample complex-
ity and performance of the CSPGD and equated it with the PGD algorithm.
The data set consisted of randomly generated 2000 × 3000 matrices of rank
r ∈ {5, 10, 15, 25, 50}. The ratio of known entries was equal ρ = {0.5, 0.3, 0.1}.
We examined different value of the parameter λ = {0.1, . . . , σmax}, where λ is
a regularization parameter for the problems P12 and P4 for CSPGD and PGD,
respectively, and σmax denote the largest singular value of the matrix RΩρ(M).
Every setup was executed over Ntrial = 20 independent trial runs.

Experiment S IV The last experiment was designed to compare CSPGD and
PGD algorithms with the CSPGD-adam algorithm, in which the least squares
problem was solved using the Adam optimization scheme [143]. Again, we tested
different regularization parameter values λ = {0.1, . . . , σmax}, where σmax denote
the largest singular value of the matrix RΩρ(M). The initial point matrix for
the Adam optimizer was sampled from the distribution N (0, 1), the learning rate
(stepsize) was set to 1e−04 and the maximum number of iterations was set to 1000.
The exponential decay parameters (β1, β2) = (0.9, 0.999) and ϵ = 1e−08 remained
as default values as suggested in the original paper [143]. The experiment was
conducted on the set of 600 × 10000 matrices of rank r ∈ {5, 10, 15} with the
rate of known entries ρ = {0.2, 0.1}. Every setup was executed over Ntrial = 20
independent trial runs. Each of the algorithm PGD, CSPGD-α and CSPGD-
adam-α, for α = {0.3, 0.4, 0.5} was evaluated over all trials.

Performance measures

Following [13, 27, 160], we the quality of the solution M̂ will be expressed as a
relative error,

ϵ :=
∥M− M̂∥F
∥M∥F

(8.2)

After Cai et al. [13], the run of the experiment will be considered to be suc-
cessfully solved if

ϵ ≤ 10−2. (8.3)

To inquire how many columns should be sampled to achieve a satisfying algo-
rithm error, we calculate an empirical cumulative distribution function (ECDF)
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to display the proportion of trials achieved given approximation error [161, 162].
ECDF is defined as F̂S : R+ → [0, 1],

F̂S(a) =
|{s|ϵs ≤ a}|
|S|

, (8.4)

Where each trial is represented as s, ϵs denotes the relative error reached by
the solution of s, and S denotes the set of all trials for the given parameters setup.

Moreover, we compare two other quality measures widely used in real data
matrix completion tasks. Normalized Mean Absolute Error (NMAE) calculated
as

NMAE =
1

|Ωtest|(mmax −mmin)

∑
(i,j)∈Ωtest

|M̂−M|, (8.5)

wheremmax andmmin denote the maximum and minimum rating, respectively, and
Ωtest denote the set of indices in test set. This metric can be found in [13,163,164]
and will be a reference for collaborative filtering tasks. We also consider ECDF
for NMAE values.

ĜS(a) =
|{s|NMAEs ≤ a}|

|S|
, (8.6)

where each trial is represented as s, NMAEs denotes the approximation error
reached by the solution of s, and S denotes the set of all of the trials for the given
parameters setup.

The image reconstruction quality is often measured by signal-to-noise ratio
(SNR) [13] and is defined as

SNR(M̂) = 20 log10

(
∥M∥F

∥M̂−M∥F

)
. (8.7)

SNR quantifies the level of a desired signal relative to the level of unwanted
noise or interference in a system. A higher SNR indicates a stronger and more
distinguishable signal relative to the noise, which is desirable in most applications.
Conversely, a lower SNR means that the noise level is relatively high compared to
the signal, making it more challenging to discern the signal accurately.

Finally, we compare the analyzed algorithms’ runtime (in seconds). Since
CSMC methods consist of two stages, while other algorithms are one staged, we
do not compare iteration numbers of algorithms to achieve solutions of prescribed
quality.
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8.3 Results of experiments
Experiments S I and S II were executed on the Linux workstation equipped with
11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz (8 cores) and 32GB RAM.
Experiments S III and S IV were run on a Linux station equipped with one
NVIDIA T4 Tensor Core GPU 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz
(4 cores) and 16 GiB RAM.

Experiment S I Firstly, we discuss results for the NN and CSNN-α, for α =
{0.1, . . . , 0.9}, algorithms in completing the 300 × 1000 matrix. We expect a
trade-off between the probability of a successful recovery and runtime. The lower
column sampling rates should result in shorter runtimes. However, the quality
of the obtained solutions can suffer. As presented in Fig. 8.1, completing the
rank-5 matrices was successful in every trial, for every tested α, if the known
part ρ was greater or equal to 0.3. In the case of the rank-10 matrices, ρ = 0.4
guaranteed successful recovery for every α. For 80% missing entries, CSNN-0.2
and CSNN-0.3 output with good solutions for rank 5 and 10, respectively. In the
case of the matrices of rank 5, CSNN-0.5 succeeded with empirical probability
0.8 when ρ = 0.1. To inquire how many columns should be sampled to achieve
a satisfying error of the algorithm, we compare ECDF (8.4) plots for the relative
error depending on the matrix rank and sample frequency (Fig. 8.2). To inquire
how many columns should be sampled to achieve satisfying runtime depending on
ρ, we compare the runtime distribution over the matrix rank and sample frequency
(Fig. 8.3). It can be seen that CSNN-0.1 was over ten times faster than NN (Fig.
8.3). For 10% known entries, CSNN-0.5 succeeded in 137 seconds, while NN
required 474 seconds on average (see Table 8.1).

Fig. 8.4 displays NMAE (8.5) and Fig. 8.5 presents SNR (8.7) for all of the
experimental setups. All CSNN-α with α ≥ 3 achieved comparable SNR and
NMAE values as NN. Table 8.1 presents mean relative error and runtime values
for NN and CSNN-α algorithms for the rank-5 matrix, while Table 8.2 presents
results for the matrix with rank 10.
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(a) Empirical probability of the successful recovery for matrix.

(b) Runtime distribution measured in seconds.

Figure 8.1: Probability of successful recovery of M ∈ R300×1000 and runtime dis-
tribution measured in seconds; NN and CSNN-α, α ∈ {0.1, · · · , 0.9} .
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Relative error (ϵ) Time (s)
Known entries ratio (ρ) 0.4 0.3 0.2 0.1 0.4 0.3 0.2 0.1
Algorithm

CSNN_0.1 4.122e-06 3.708e-06 6.613e-03 2.106e+00 1.076e+01 1.374e+01 4.538e+01 9.614e+00
CSNN_0.2 3.287e-06 5.717e-06 4.341e-06 2.393e-01 2.287e+01 2.397e+01 3.217e+01 2.598e+01
CSNN_0.3 2.567e-06 3.045e-06 3.839e-06 2.507e-02 4.638e+01 5.396e+01 6.519e+01 6.213e+01
CSNN_0.4 2.839e-06 1.823e-03 4.393e-06 1.100e-02 6.452e+01 7.624e+01 8.809e+01 9.253e+01
CSNN_0.5 2.547e-06 2.627e-06 3.085e-06 3.141e-03 9.119e+01 1.087e+02 1.280e+02 1.369e+02
CSNN_0.6 2.297e-06 2.712e-06 1.880e-06 1.853e-03 1.221e+02 1.424e+02 1.791e+02 1.794e+02
CSNN_0.7 2.552e-06 2.423e-06 1.799e-06 1.892e-03 1.559e+02 1.888e+02 2.483e+02 2.370e+02
CSNN_0.8 1.509e-06 2.346e-06 1.841e-06 1.485e-03 2.056e+02 2.364e+02 3.141e+02 3.016e+02
CSNN_0.9 2.361e-06 2.207e-06 2.161e-06 1.506e-03 2.518e+02 3.028e+02 3.821e+02 3.686e+02
NN 3.031e-06 2.738e-06 2.724e-06 7.016e-04 3.149e+02 3.545e+02 4.842e+02 4.739e+02

Table 8.1: Results S I: NN and CSNN-α, α ∈ (0.1, 0.9), M ∈ R300×1000, rank
r = 5.

Relative error (ϵ) Time [s]
Known entries ratio (ρ) 0.4 0.3 0.2 0.1 0.4 0.3 0.2 0.1
Algorithm

CSNN_0.1 4.698e-06 4.154e-03 7.119e-01 7.220e+00 1.300e+01 4.799e+01 1.359e+01 1.657e+01
CSNN_0.2 4.545e-06 4.117e-06 1.062e-02 1.036e+00 2.447e+01 3.040e+01 1.834e+02 4.383e+01
CSNN_0.3 2.424e-06 5.201e-06 7.934e-05 5.563e-01 5.222e+01 5.304e+01 8.009e+01 9.077e+01
CSNN_0.4 2.284e-06 4.148e-06 1.220e-03 3.652e-01 7.068e+01 7.665e+01 9.899e+01 1.127e+02
CSNN_0.5 2.183e-06 4.053e-06 6.413e-04 2.757e-01 8.944e+01 1.097e+02 1.425e+02 1.410e+02
CSNN_0.6 1.816e-06 2.459e-06 3.005e-06 2.159e-01 1.154e+02 1.514e+02 1.794e+02 1.796e+02
CSNN_0.7 1.462e-03 2.800e-06 3.946e-06 1.800e-01 1.403e+02 1.804e+02 2.247e+02 2.260e+02
CSNN_0.8 1.858e-06 3.253e-06 4.070e-06 1.503e-01 1.720e+02 2.236e+02 2.709e+02 3.093e+02
CSNN_0.9 4.096e-04 2.659e-06 3.750e-04 1.258e-01 2.132e+02 2.841e+02 3.300e+02 4.168e+02
NN 1.635e-06 2.228e-06 4.961e-06 1.050e-01 2.443e+02 3.391e+02 3.860e+02 5.568e+02

Table 8.2: Results S I; NN and CSNN-α, α ∈ (0.1, 0.9), M ∈ R300×1000, rank
r = 10.

Experiment S II Experiment S II benchmarks performance of CSNN-α, α ∈
{0.1, . . . , 0.5} algorithms with Matrix Factorization (MF) [84, 85], Iterative SVD
[91] and NN algorithms. The known entries rate ρ was set to 0.1, and the rank
of the matrix was either 5 or 10. Presented results were obtained for the best
maximal rank parameter MF and Iterative SVD used. Fig. 8.6 displays ECDF
plots for the relative error ϵ. Iterative SVD did not succeed for both rank settings.
CSNN-0.1 failed to recover the original rank-10 matrices (Fig. 8.6). MF was faster
than CSNN-α algorithms (Fig. 8.7). The magnitude of the relative error for
CSNN-0.3 and CSNN-0.5 was significantly smaller for rank-5 and rank-10 cases,
respectively. In that case, both algorithms returned a solution of superior quality.

Experiment S III We discuss results for the completion of the 2000 × 3000
matrix with algorithms PGD and CSPGD-α for α ∈ {0.3, 0.4, 0.5}, known entries
rate ρ ∈ {0.5, 0.3, 0.1} and matrix rank r ∈ {5, 10, 15, 25, 50}. As shown in Fig.
8.10) ECDF values were similar for all of the algorithms. In almost all test sce-
narios, algorithms succeeded in matrix completion tasks. Only for ρ = 0.1 and
r = 50 the relative error was greater than 10−2. Algorithms CSPGD-α and PGD
failed in this test scenario. In all successful trials, CSPGD-0.3 offered significant
runtime savings (Fig. 8.11). For ρ = 0.1, CSPGD-0.3 completed the task in 123
seconds, while PGD required 375 seconds (see Table 8.4). We want to emphasize



Figure 8.2: Results S I: ECDF (8.4) curves depending on the matrix rank and
rate of the known entries for NN and CSNN-α, α ∈ {0.1, · · · , 0.9}, M ∈ R300×1000.
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Figure 8.3: Results S I: Runtime distribution depending on the matrix rank and
rate of the known entries for NN and CSNN-α, α ∈ {0.1, · · · , 0.9}, M ∈ R300×1000.
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Figure 8.4: Results S I: ECDF curves (8.6) depending on the matrix rank and
rate of the known entries for NN and CSNN-α, α ∈ {0.1, · · · , 0.9}, M ∈ R300×1000.
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Figure 8.5: Results S I: SNR (8.7) depending on the matrix rank and rate of the
known entries for NN and CSNN-α, α ∈ {0.1, · · · , 0.9}, M ∈ R300×1000.
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Figure 8.6: Results S II: ECDF curves (8.4) depending on the matrix rank for
MF, Iterative SVD, NN and CSNN-α, α ∈ {0.1, · · · , 0.5}, M ∈ R300×1000, ratio of
known entries ρ = 0.2.
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Figure 8.7: Runtime distribution depending on the matrix rank for MF, Iterative
SVD, NN and CSNN-α, α ∈ {0.1, · · · , 0.5}, M ∈ R300×1000, ratio of known entries
ρ = 0.2.

Figure 8.8: Results S II: NMAE depending on the matrix rank for MF, Iterative
SVD, NN and CSNN-α, α ∈ {0.1, · · · , 0.5}, M ∈ R300×1000, ratio of known entries
ρ = 0.2.
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Figure 8.9: Results S II: SNR depending on the matrix rank for MF, Iterative
SVD, NN and CSNN-α, α ∈ {0.1, · · · , 0.5}, M ∈ R300×1000, ratio of known entries
ρ = 0.2.

Relative error (ϵ) Time [s]
Rank

Known entries ratio (ρ) Algorithm 5 10 5 10

0.2 MF 1.162e-04 1.401e-04 3.375e+01 3.380e+01
CSNN_0.1 6.719e-03 6.954e-01 6.259e+01 1.321e+01
CSNN_0.2 2.644e-04 8.406e-03 3.539e+01 1.738e+02
CSNN_0.3 3.290e-06 9.235e-04 6.801e+01 9.180e+01
CSNN_0.4 1.198e-06 4.539e-05 9.832e+01 9.942e+01
CSNN_0.5 2.308e-06 3.103e-06 1.299e+02 1.302e+02
IterativeSVD 2.518e-02 3.675e-02 5.527e-01 7.890e-01
NN 3.090e-06 5.858e-06 4.505e+02 3.790e+02

Table 8.3: Results S II; MF, Iterative SVD, NN and CSNN-α, α ∈ (0.1, 0.5), for
M ∈ R300×1000 and ratio of known entries ρ = 0.2.
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Relative error (ϵ) Time [s]
Known part (ρ) 0.5 0.3 0.1 0.5 0.3 0.1

Rank Algorithm

5 CSPGD-0.3 6.336e-04 1.260e-03 5.076e-03 5.868e+01 5.548e+01 5.103e+01
CSPGD-0.4 6.016e-04 1.209e-03 4.679e-03 7.554e+01 7.148e+01 6.608e+01
CSPGD-0.5 5.906e-04 1.191e-03 4.491e-03 9.583e+01 9.136e+01 8.423e+01
PGD 5.906e-04 1.191e-03 4.491e-03 1.396e+02 1.408e+02 1.316e+02

10 CSPGD-0.3 6.882e-04 1.367e-03 6.241e-03 6.815e+01 6.669e+01 6.673e+01
CSPGD-0.4 6.252e-04 1.268e-03 5.417e-03 9.079e+01 8.858e+01 8.732e+01
CSPGD-0.5 6.052e-04 1.235e-03 5.040e-03 1.184e+02 1.158e+02 1.121e+02
PGD 6.052e-04 1.235e-03 5.040e-03 2.036e+02 2.079e+02 1.995e+02

15 CSPGD-0.3 7.408e-04 1.474e-03 7.737e-03 7.676e+01 7.714e+01 8.447e+01
CSPGD-0.4 6.473e-04 1.325e-03 6.299e-03 1.034e+02 1.034e+02 1.091e+02
CSPGD-0.5 6.174e-04 1.275e-03 5.687e-03 1.363e+02 1.362e+02 1.385e+02
PGD 6.174e-04 1.275e-03 5.687e-03 2.526e+02 2.615e+02 2.587e+02

25 CSPGD-0.3 8.454e-04 1.712e-03 1.251e-02 9.280e+01 9.693e+01 1.523e+02
CSPGD-0.4 6.900e-04 1.453e-03 8.794e-03 1.262e+02 1.309e+02 1.669e+02
CSPGD-0.5 6.398e-04 1.365e-03 7.397e-03 1.679e+02 1.724e+02 2.009e+02
PGD 6.398e-04 1.365e-03 7.397e-03 3.350e+02 3.535e+02 3.775e+02

50 CSPGD-0.3 1.132e-03 2.483e-03 1.212e+00 1.345e+02 1.522e+02 2.573e+02
CSPGD-0.4 8.153e-04 1.849e-03 6.699e-01 1.820e+02 2.014e+02 3.353e+02
CSPGD-0.5 7.073e-04 1.635e-03 4.372e-01 2.413e+02 2.620e+02 4.117e+02
PGD 7.073e-04 1.635e-03 4.372e-01 5.156e+02 5.598e+02 8.183e+02

Table 8.4: Results S III; PGD and CSPGD-α, α ∈ {0.3, 0.4, 0.5}, M ∈ R2000×3000.

that λ value for all algorithms was selected based on the relative error. Thus
larger λ values could result in smaller runtimes and comparable relative errors.
The difference between PGD and CSPGD could be less sharp in that case. Fig.
8.12 and Fig. 8.13 present NMAE and SNR and confirm that results obtained
with CSPGD and PGD algorithms maintain equivalent quality.

Experiment S IV Finally, we would like to discuss results for PGD, CSPGD-α
and CSPGD-α-adam, α ∈ {0.3, 0.4, 0.5} for matrices with ten thousand columns
for rank r ∈ {5, 10, 15} and known entries rates ρ ∈ {0.2, 0.1}. As shown in Fig.
8.14, all algorithms achieved the same magnitude of the relative error (ϵ ∼ 10−3).
Sampling α = 0.3 columns of the matrix allowed to save up to 160 seconds in
case of rank 15 matrices with 0.1 known entries (see Table 8.5). The CSPGD-
adam algorithm was faster than the CSPGD algorithm. However, the runtime of
both types of algorithms had the same magnitude (Fig. 8.15). All experiment
trials took reasonably less time than trials of the S III experiment (although the
number of elements in the matrices was the same). All algorithms maintained a
good quality of performance in terms of NMAE (Fig. 8.16) and SNR values (Fig.
8.17).
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Figure 8.10: Results S III: ECDF curves (8.4) depending on the matrix rank
and rate of the known entries for PGD and CSPGD-α, α ∈ {0.3, 0.4, 0.5}, M ∈
R2000×3000.
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Figure 8.11: Results S III: Runtime distribution depending on the matrix rank
and rate of the known entries for PGD and CSPGD-α, α ∈ {0.3, 0.4, 0.5}, M ∈
R2000×3000.
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Figure 8.12: Results S III: NMAE depending on the matrix rank and rate of the
known entries for PGD and CSPGD-α, α ∈ {0.3, 0.4, 0.5}, M ∈ R2000×3000.
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Figure 8.13: Results S III: SNR depending on the matrix rank and rate of the
known entries for PGD and CSPGD-α, α ∈ {0.3, 0.4, 0.5}, M ∈ R2000×3000.
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Figure 8.14: Results S IV: ECDF curves (8.4) depending on the matrix rank
and rate of the known entries for PGD, CSPGD-α and CSPGD-adam-α, α ∈
{0.3, 0.4, 0.5}, M ∈ R600×10000.

90



Figure 8.15: Results S IV: Runtime depending on the matrix rank and rate of
the known entries for PGD, CSPGD-α and CSPGD-adam-α, α ∈ {0.3, 0.4, 0.5},
M ∈ R600×10000.
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Figure 8.16: Results S IV: NMAE depending on the matrix rank and rate of
the known entries for PGD, CSPGD-α and CSPGD-adam-α, α ∈ {0.3, 0.4, 0.5},
M ∈ R600×10000.
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Figure 8.17: Results S IV: SNR depending on the matrix rank and rate of the
known entries for PGD, CSPGD-α and CSPGD-adam-α, α ∈ {0.3, 0.4, 0.5}, M ∈
R600×10000.
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Relative (ϵ) Time [s]
Rank 5 10 15 5 10 15

Known entries ratio (ρ) Algorithm

0.2 CSPGD-0.3 2.051e-03 2.246e-03 2.459e-03 7.256e+01 8.485e+01 9.759e+01
CSPGD-0.4 2.031e-03 2.202e-03 2.395e-03 9.842e+01 1.158e+02 1.329e+02
CSPGD-0.5 2.018e-03 2.182e-03 2.363e-03 1.165e+02 1.372e+02 1.568e+02
CSPGD-adam-0.3 3.988e-03 3.387e-03 3.248e-03 6.457e+01 7.698e+01 8.966e+01
CSPGD-adam-0.4 5.033e-03 4.047e-03 3.711e-03 8.210e+01 9.965e+01 1.167e+02
CSPGD-adam-0.5 6.240e-03 4.794e-03 4.276e-03 9.799e+01 1.188e+02 1.386e+02
PGD 6.240e-03 4.794e-03 4.276e-03 9.811e+01 1.429e+02 1.858e+02

0.1 CSPGD-0.3 5.036e-03 6.190e-03 7.859e-03 6.964e+01 8.752e+01 1.098e+02
CSPGD-0.4 4.915e-03 5.926e-03 7.387e-03 9.609e+01 1.214e+02 1.512e+02
CSPGD-0.5 4.851e-03 5.800e-03 7.135e-03 1.164e+02 1.457e+02 1.793e+02
CSPGD-adam-0.3 6.066e-03 6.694e-03 8.197e-03 6.664e+01 8.449e+01 1.067e+02
CSPGD-adam-0.4 6.661e-03 6.806e-03 7.909e-03 8.555e+01 1.110e+02 1.405e+02
CSPGD-adam-0.5 7.460e-03 7.147e-03 7.964e-03 1.025e+02 1.319e+02 1.655e+02
PGD 7.460e-03 7.147e-03 7.964e-03 1.139e+02 1.822e+02 2.592e+02

Table 8.5: Results S IV; PGD and CSPGD-α, α ∈ {0.3, 0.4, 0.5}), M ∈ R600×10000.

8.4 Conclusion and discussion

In this chapter, we explored the ability of the CSMC algorithm to recover matrices
in various test scenarios. Test matrices fulfilled the coherence and rank constraints
from the theorem 5.3.1. Since CSMC algorithms may bring computational gain
in recovery rectangular matrices with more columns, all test matrices M had
dimensions n1 × n2, n2 > n1.

To accurately assess the significance of the column subset selection in ma-
trix completion tasks, we compared NN and CSNN-α algorithms. Exact Nuclear
Norm minimization is known to produce solutions of the best quality and has the-
oretical guarantees provided by theorem 5.3.1. However, SDP formulations can
be computationally expensive, especially for large matrices. The computational
complexity of solving SDP problems overgrows with the size of the matrix, mak-
ing it challenging to apply SDP-based methods to large-scale matrix completion
problems. It is known to be inefficient in the case of large matrices due to the
extensive memory cost of the SDP solvers. The results of the S I experiment
proved that CSNN-0.3 could maintain the quality of NN solutions while offering
considerable runtime savings. The quality of the solutions is appraised by the rel-
ative error, NMAE and SNR values. We benchmarked CSNN and NN algorithms
with the Matrix Factorization and widely used Iterative SVD in experiment S II.
The Iterative SVD was the fastest of algorithms, but it failed in most experiment
trials. MF output with the solution of good quality in a short time. However,
the relative error was more significant than in the case of CSNN algorithms. Still,
CSNN has the same limitations regarding vast amounts of data. The CSNN may
be used, in instances where the main focus of the task is to obtain a guaranteed
solution, for rectangular matrices.

For large-scale problems, we applied algorithms that utilize proximal gradient
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descent as the optimization algorithm. The algorithms are based on the principle
of nuclear norm regularization, which promotes low-rank solutions. For larger
matrices of dimensions 2000 × 3000, we compared PGD and CSPGD algorithms
in experiment S III. Both algorithms’ performance depends on the choice of λ
parameter. In our scenario, we chose λ based on the value of relative error. All
of th CSPGD-α algorithms for α ∈ {0.3, 0.4, 0.5} succeeded in matrix comple-
tion task. Again CSPGD-0.3 brought substantial gain in terms of the runtime.
However, we would like to emphasize that the relative error determined the λ
parameter’s choice. Larger α values could result in solutions of similar quality
and lower algorithm runtime in the case of PGD.

Lastly, we addressed the completion of the matrices with thousand of columns
in experiment S IV. The closed formula solves the least squares problem in the
second stage of the CSMC algorithm. However, it can also be obtained with
scalable convex optimization methods like stochastic gradient descent or Adam
[143]. As in the S III scenario, CSPGD-0.3 and CSPGD-0.3-adam resulted in
considerable runtime savings while maintaining the quality of the solutions of
the PGD. CSPGD-adam was slightly faster than the CSPGD algorithm, but the
runtime difference was insignificant in this scenario.
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Chapter 9

Real data applications

Matrix completion has arisen in a vast range of applications, including signal pro-
cessing, image processing, recommendation systems, sensor localization, multi-
task learning, genomics, multi-task learning and system identification [13, 160,
165–170]. The ability to estimate missing or corrupted entries in matrices has
broad implications in various domains where incomplete data is encountered, en-
abling better decision-making, predictions, and understanding of complex systems.
While testing on synthetic data sets provides valuable insights, evaluating numer-
ical algorithms on real-world data sets is crucial to ensure their effectiveness and
generalizability. In this chapter, we explore the performance of the CSMC method
on three real data examples. Firstly, we evaluate the presented method in collab-
orative filtering, one of the techniques most commonly used in recommendation
systems [171,172]. Then we analyze results for the application CSMC method in
the image processing [160,167,168] and the link prediction in a graph [69,173].

9.1 Recommendation system

Matrix completion is widely used in recommendation systems to predict missing
entries in user-item rating matrices. By leveraging the observed ratings, matrix
completion algorithms can estimate the unobserved ratings and provide personal-
ized recommendations to users. This is particularly useful in e-commerce, movie
recommendations, and social media platforms. The Netflix Prize was the inter-
national competition for the best algorithm to predict user ratings for films from
previous ratings without any other information about the users or films (Fig. 9.1).
By setting up each movie’s ratings as a row and each user’s ratings as a column,
the dataset in a recommendation system may be represented as a matrix with un-
observed ratings as missing entries [13]. This section evaluates the CSMC method
on the publicly available data set from the Movielens research project [174].

Data set and data preprocessing Since we wanted to benchmark CSNN
and CSPGD algorithms, we considered two data sets: Movie Lens Small and
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Figure 9.1: Movie recommendation problem as matrix completion

Movie Lens Big. The Movie Lens Small was represented by M ∈ R140×668 matrix
obtained from the Movie Lens Small dataset, which contained 100 000 5-star
ratings applied to 9742 movies by 610 users. Since the original matrix was too
large for SDP solvers in NN and CSNN algorithms, we followed the procedure
described in [13, 175] to obtain a submatrix of the desired size. Specifically, we
sorted the data by user frequency rate and took data containing rates made by
the top 60% users. Then we sorted obtained data by movie frequency rate and
selected the top 50% movies. Obtained matrix had ρ = 0.25 known entries. In
the second test series, we evaluated CSPGD algorithms on the Movielens 25M
data set, containing 25 million ratings applied to 62 000 movies by 162 000 users.
Again, due to the large size and low observation rate, we extracted a 654× 27813
matrix M. The known entries rate ρ was equal to 0.09. As shown in Fig. 9.2, the
distribution of the ratings in each of the data sets was highly similar.

Experimental procedures We designed two test scenarios, M I and M II.
In the M I scenario, we assessed the performance of the NN and CSNN-α for
α ∈ {0.3, 0.4, 0.5, 0.7} on the Movie Lens Small data set. In the M II scenario, we
evaluated the performance of the PGD and CSPGD-α for α ∈ {0.3, 0.5} on the
Movie Lens Big data set. In the whole experiment, we followed previous work [13]
and employed the Cross-Validation method. In each trial of the experiment, Ω set
is randomly split into training and testings sets denoted by Ωtrain and Ωtest [176].
Specifically, we randomly selected ρ rate of the observed set, and by assigning the
null values to the rest of the entries, we constructed RΩtrain(M) matrix. We evalu-
ated each algorithm on the Ωtest set. We conducted 20 independent experimental
trials under each scenario.
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(a) Movie Lens Big

(b) Movie Lens Small

Figure 9.2: Distribution of the rates in Movie Lens Small and Movie Lens Big
data sets.
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NMAE HR Time [s]
mean std mean std mean std

Algorithm

CSNN-0.3 0.271 0.028 0.172 0.005 10.137 1.118
CSNN-0.4 0.240 0.060 0.191 0.005 17.677 2.005
CSNN-0.5 0.248 0.176 0.208 0.006 28.673 2.419
CSNN-0.7 0.156 0.011 0.232 0.004 39.893 8.595
NN 0.127 0.001 0.255 0.006 56.924 2.435

Table 9.1: Results for M I test scenario; NN and CSNN-α algorithms, α ∈
{0.3, 0.4, 0.5, 0.7}.

Performance measures Apart from the NMAE (8.5), the quality of the rec-
ommendation was measured as hit-rate, defined as

HR =
#hits

|Ωtest|
, (9.1)

where a predicted rating was considered a hit if its rounded value was equal
to the actual rating in the test set [13, 176]. As in Chapter 5, we also compared
the runtimes of the algorithms.

Results M I As shown in the Fig. 9.3, the predictions of CSNN-0.7 maintained
the quality of the NN algorithms in terms of NMAE: (0.16 vs 0.13) and HR (0.23
vs 0.25), and resulted in run time savings from 57 seconds to 40 seconds. CSNN-
0.3 required only 10 seconds and output the solution with NMAE: 0.27 and HR:
0.17. Table 9.1 shows results for CSNN algorithms for all test column sampling
rates α.

Results M II CSPGD-α for α = 0.3 and α = 0.5 obtained the best results for λ
parameter equal to 10 (NMAE=0.14 and NMAE=0.13), while PGD achieved the
lowest NMAE (0.12) for λ = 25 (see Table 9.2). CSPGD algorithms were much
faster and required 23-27 seconds while requiring over 400 seconds (Fig. 9.4).
Obtained predictions were slightly better than in M I experiment. The HR values
for PGD and CSPGD-0.3 were equal to 0.28 and 0.24, respectively. The good
performance for α = 0.3 can be caused by the fact that matrices in M II were
bigger, while data could be explained using a similar number of latent factors.
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(a) NMAE

(b) HR

(c) Runtime

Figure 9.3: Results for M I test scenario; NN and CSNN-α algorithms, α ∈
{0.3, 0.4, 0.5, 0.7}.
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(a) NMAE

(b) HR

(c) Runtime

Figure 9.4: Results for M II test scenario; PGD and CSPGD-α algorithms for
α ∈ {0.3, 0.5}.
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NMAE HR Time [s]
mean std mean std mean std

Algorithm

CSPGD-0.3 0.138 0.001 0.245 0.002 23.032 0.321
CSPGD-0.5 0.135 0.001 0.252 0.001 27.774 0.299
PGD 0.119 0.001 0.281 0.001 449.026 9.502

Table 9.2: Results for M II test scenario; PGD and CSPGD-α algorithms for
α ∈ {0.3, 0.5}.
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9.2 Image inpainting

Image inpainting is used in image processing and computer vision to fill in miss-
ing or corrupted parts. The low-rank models proved tremendously helpful in this
task [13, 38, 160, 177]. In this context, the image is treated as a matrix, and
missing entries represent the missing or corrupted regions. The basic idea behind
low-rank matrix completion is to exploit the assumption that images often possess
low-rank structures. The greatest singular values of the image matrix dominate
its primary information, whereas the smallest singular values can be set to zero
without losing essential details [38]. A low-rank matrix can represent the ma-
trix approximately, indicating underlying patterns and redundancies in the image
data. Fig. 9.5 presents the distribution of the singular values for the sample
image and its rank-10 approximation with the quality measured by SNR = 31.50
(8.7) and the relative error ϵ = 0.03 (8.2). This section compares the performance
of the low-rank matrix completion algorithms: CSNN, CSPGD, NN and PGD in
the image-inpainting experiments. It is important to note that low-rank matrix
completion methods may have limitations when dealing with complex images,
textures, or structures that a low-rank matrix cannot adequately represent. More
sophisticated techniques, such as deep learning-based approaches, may be more
effective for image inpainting tasks [178–183].

Data set and data preprocessing As in the previous example, we constructed
two data sets, Bridges Small and Bridges Big. Each one contained ten grey-
scaled pictures of bridges downloaded from the public repository 1. Images from
the Bridges Small data set were represented as 240 × 360 matrices. The mean
and standard deviation of the coherence parameter were equal to 1.72 and 0.12,
respectively. The Bridges Big data set contained matrices of various sizes with a
mean number of rows of 3114.3 and the mean number of columns of 4898.4. For
both data sets, we constructed RΩρ(M) (Definition 2.0.3) by randomly removing
1− ρ pixels ρ ∈ {0.4, 0.2, 0.1} (Fig. 9.6).

Experimental procedures We constructed two test scenarios: P I and P II. In
P I test scenario we evaluated NN and CSNN-α algorithms for α ∈ {0.3, 0.4, 0.5, 0.7}
and the known entries rate ρ ∈ {0.4, 0.2, 0.1}. We assessed the performance of the
algorithms on the Bridges Small data set among 100 independent trials (ten trials
per picture). In P II test scenario we compared PGD and CSPGD-α algorithms
for α ∈ {0.3, 0.4} and the ρ ∈ {0.4, 0.2, 0.1}. We evaluated the performance of the
algorithms on the Bridges Big data set among 100 independent trials (10 trials
per picture).

Performance measures We assessed the quality of the reconstructed image
with the SNR ( 8.7) and the relative error (8.2).

1image source (https://pxhere.com/pl/)
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(a) Original image (b) Rank-10 approximation

(c) Singular values distribution

Figure 9.5: Low-rank approximation of the image.

Results P I Fig. 9.7 presents a picture recovered by NN and CSNN-α for
α ∈ {0.4, 0.5, 0.7} Table 9.3 presents SNR, approximation error and runtime values
for all tested algorithms. The SNR value achieved by the NN algorithm is greater
than 20 for the recovery of 0.4 and 0.2 known entries and was equal to 18.59 for
inpainting 0.9 of the image. The CSNN-0.7 solutions maintained good quality with
the SNR 21.13, 18.52, and 16.45 for the ρ equal to 0.4, 0.2, and 0.1, respectively.
As shown in Fig. 9.8, CSNN-0.5 offers considerable time savings and good relative
error. In the case of 0.4 known entries, relative error ϵ was equal to 0.088 and
0.055 for CSNN-0.7 and NN, respectively, while CSNN-0.5 was significantly faster
(113.215 seconds vs 73.67 seconds).

Results P II In this section, we present results for recovering pictures in the
Image Big data set. Fig. 9.9 presents image inpainting for a sample picture with
0.1 known entries, SNR, and relative error.

Table 9.4 presents SNR, relative error, and runtime values for the tested algo-
rithms. The CSPGD-0.4 output with a cost-effective solution of similar quality to
the PGD algorithm. The SNR values were above 20 for both algorithms in case of
0.6 missing entries. In the recovery of the 80 % of an image, PGD achieved SNR
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(a) Original image

(b) Case 2: Image with 10% known entries

Figure 9.6: Image inpainting scenario.

Bridge restored with CSNN-0.4 Bridge restored with CSNN-0.5

Bridge restored with CSNN-0.7 Bridge restored with NN

Figure 9.7: Image inpainting for P I experiment; NN and CSNN algorithms,
ρ = 20% known entries.
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(a) Relative error (8.2)

(b) SNR (8.7)

(c) Runtime in seconds

Figure 9.8: Results for PI; NN and CSNN-α algorithms for α ∈ {0.3, 0.4, 0.5, 0.7}.
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(a) Original image (b) Image with known 10% entries

(c) Image recovered with CSPGD-0.3,
SNR = 20.50 (8.7), ϵ = 0.09 (8.2)

(d) Image recovered with CSPGD-0.4,
SNR = 20.92 (8.7), ϵ = 0.09(8.2)

(e) Image recovered with PGD, SNR =
21.76(8.7), ϵ = 0.08 (8.2)

Figure 9.9: Image inpainting for P II experiment; PGD and CSPGD algorithms,
ρ = 10% known entries.
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SNR Relative error (ϵ) Time [s]
Known entries ratio ρ 0.4 0.2 0.1 0.4 0.2 0.1 0.4 0.2 0.1
Algorithm

CSNN_0.3 18.844 10.829 7.366 0.114 0.289 0.438 16.306 12.026 19.365
CSNN_0.4 17.708 12.245 11.491 0.130 0.245 0.268 24.151 17.997 28.123
CSNN_0.5 17.851 15.245 14.172 0.128 0.173 0.196 35.719 24.424 38.647
CSNN_0.7 21.134 18.526 16.458 0.088 0.119 0.151 73.670 44.948 65.639
NN 25.221 21.377 18.582 0.055 0.085 0.118 113.215 83.196 88.966

Table 9.3: Results for P I experiment; NN and CSNN-α, α ∈ {0.3, 0.4, 0.5, 0.7}.

SNR Relative error ϵ Time [s]
Known entries ratio ρ 0.4 0.2 0.1 0.4 0.2 0.1 0.4 0.2 0.1
Algorithm

CSPGD_0.3 16.621 18.115 16.537 0.185 0.150 0.176 118.831 84.615 64.262
CSPGD_0.4 21.237 19.049 17.014 0.108 0.135 0.168 166.478 124.155 99.823
PGD 24.794 20.932 18.432 0.071 0.108 0.141 241.233 166.548 120.562

Table 9.4: Results for P II experiment; PGD and CSPGD-α, α ∈ {0.3, 0.4}.

20.93, while the SNR of CSPGD-0.4 output was equal to 19.05, in the recovery
of the 90 %, those values were equal to 18.43 and 17.01. In all cases, CSPGD-0.4
was relatively faster than PGD 9.10. The relative error was slightly bigger for
PGD than the CSPGD-0.4 algorithm (0.071 vs 0.108, 0.108 vs 0.135, and 0.141
vs 0.168 for known rate ρ equal to 0.4, 0.2 and 0.1, respectively).
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(a) Relative error (8.2)

(b) SNR (8.7)

(c) Runtime

Figure 9.10: Results for P II test scenario; PGD and CSPGD-α, α ∈ {0.3, 0.4}.
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9.3 Link prediction

Link prediction refers to predicting missing or future links in a network. The
network is modelled as a graph G = (V,E), with the set V of vertices and set
of edges E. It can be represented as an adjacency matrix A. If there exists an
observed link between vertices i and j, then ai,j = 1; otherwise ai,j = 0. The link
prediction problem aims to learn the distribution of existing links and, thus, to
predict the potential links in the graph [69]. Link prediction has applications in
various domains, including social networks, recommendation systems, biological
networks, and information retrieval. In scientific collaboration networks or co-
authorship networks, link prediction can be used to predict future collaborations
between researchers. By analyzing past collaboration patterns, research interests,
and affiliations, link prediction algorithms can identify researchers who are likely
to collaborate in the future. Link prediction predicts protein-protein interactions,
gene regulatory networks, or drug-target interactions in biological networks.

Link prediction techniques can be used in causal inference within graphical
models. Graphical models, such as Bayesian networks or causal networks, are
graphical representations of variables and their dependencies, where edges repre-
sent causal relationships or conditional dependencies between variables [184–187].
Predicted links can provide insights into potential causal relationships or depen-
dencies between variables, which can be further explored in the context of causal
inference [188, 189]. Link prediction techniques can be applied to estimate the
likelihood or probability of these missing edges, indicating potential causal links
that should be investigated further. Link prediction can help evaluate the strength
or relevance of potential causal relationships. By predicting the presence or ab-
sence of edges, the strength of the predicted links can indicate the strength of the
potential causal relationships between variables [190].

Link prediction algorithms employ various techniques, including similarity
measures, graph-based methods, latent factor models, and machine learning ap-
proaches. These algorithms consider node attributes, network topology, neigh-
bourhood structure, and observed links to estimate the likelihood of missing or
future links. Matrix completion algorithms can be employed to predict missing
or future links by estimating the missing entries in the adjacency matrix. The
basic idea is to leverage the observed links in the network to infer the likelihood of
links between pairs of nodes that have not been observed. To apply matrix com-
pletion for link prediction, the observed network structure is used to construct
a partially observed adjacency matrix. The missing entries in this matrix corre-
spond to the links that need to be predicted. Matrix completion algorithms are
then applied to estimate the missing entries, effectively predicting the existence
or absence of links. Matrix completion can be a valuable tool for link predic-
tion, particularly in scenarios where the network exhibits certain regularities or
follows low-dimensional structures. While matrix completion can be effective in
networks with such characteristics, it may not perform optimally in networks with
complex and diverse link patterns. In this section, we evaluate the performance
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of the CSNN algorithm with state-of-the-art link prediction methods: Common
Neighbor Centrality [191], Jaccard Coefficient [192] and Resource Allocation In-
dex [193].

Data sets and data preprocessing We evaluated CSNN on the publicly avail-
able data set from the Koblenz Network Collection [194], namely Blogs 2 contain-
ing the hyperlinks between blogs in the context of 2004 US election. Based on the
Blogs data set, we constructed a Blogs Small set containing 300 × 300 matrices
following the works of [69,173]. Obtained matrix had 0.9 missing entries.

Experimental procedure We compared NN and CSNN-α with the established
link prediction algorithms: Common Neighbor Centrality [191], Jaccard Coeffi-
cient [192], and Resource Allocation Index [193]. To evaluate the performance of
our methods, we followed the works of [69,173] by randomly dividing the existing
links into training and testing samples. From the perspective of matrix comple-
tion, this is the same as randomly splitting the observed entries of the adjacency
matrix M into corresponding Ωtest and Ωtrain.

Performance measures Following [13], we adopted two metrics: Precision
defined in [195], which focuses on the top predicted links, and Area Under the
receiver operating characteristic Curve (AUC) defined in [13,196], which evaluates
the entire set of predicted links. The ratio of the number of connected edges to the
predicted number of connected edges defines precision. Filled matrix entries are
interpreted as the likelihood of unobserved or new edges. The higher likelihood
indicates a greater possibility of an unobserved link [69]. We sort the entries of
predicted links in descending order and select the top L links. L is chosen to be
the cardinality of the testing dataset. Let Lm be the number of links in the top L
predicted links that appear in the testing dataset. Precision can be calculated as

Precision =
Lm
L
, (9.2)

where the higher Precision indicates more accurate predictions [69], AUC mea-
sures the area under the receiver operating characteristic curve, which is inter-
preted as the probability that a randomly chosen missing link from the set of
predicted Ω test is given a higher likelihood than a randomly chosen potentially
non-existing link (which is the set of all unobserved links from G) [13]. Follow-
ing [13], we calculate AUC as

AUC =
ym + 0.5yn

y
, (9.3)

2Blogs data set(https://http://konect.cc/networks/moreno_blogs/)
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AUC Precision Time [s]
mean std mean std mean std

Algorithm

CSNN-0.3 5.85e-01 1.14e-02 2.64e-01 1.48e-02 3.13e+02 3.84e+02
CSNN-0.5 5.92e-01 1.94e-02 2.78e-01 9.80e-03 4.73e+02 2.82e+02
CSNN-0.7 5.97e-01 1.41e-02 2.86e-01 1.13e-02 8.47e+02 8.88e+02
NN 6.01e-01 1.65e-02 2.95e-01 1.05e-02 1.50e+03 1.71e+03
Common neighbour centrality 6.36e-01 1.71e-02 3.18e-01 1.33e-02 8.37e-02 3.86e-03
Jaccard Coefficient 6.38e-01 1.15e-02 3.15e-01 1.33e-02 1.58e-05 2.87e-05
Resource allocation index 6.39e-01 1.17e-02 3.12e-01 1.23e-02 1.55e-05 3.72e-05

Table 9.5: Results link prediction in G I; Resource allocation index, Jaccard Coefficient,
Common neighbour centrality, NN, CSNN-α, α ∈ {0.3, 0.5, 0.7}.

where y is the number of independent comparisons between each randomly
picked pair of a missing link and a non-existing link. ym is the times that the
missing links have a higher predicted likelihood than non-existing links while yn
counts the number of times if their likelihoods are equal. We use y = 1000. The
degree to which the AUC exceeds 0.5 indicates how much better the predictions
are compared with a random guess [173].

Results Table 9.5 presents a comparison between NN, CSNN-α for α ∈ {0.3, 0.5, 0.7}
with algorithms based on Jaccard Coefficient, Resource Allocation Index and
Common Neighbour Centrality. All established algorithms resulted in more accu-
rate predictions than NN and CSNN algorithms. Although the quality of the NN
and CSNN algorithms is similar to the established link prediction algorithms, the
runtime of the NN and CSNN algorithms is significantly higher 9.11.

9.4 Conclusion and discussion

The low-rank matrix completion has broad applicability in various domains where
incomplete or corrupted matrices must be reconstructed or predicted based on
their low-rank structure. Here, we assess the performance of the presented CSMC
methods in the recommendation system, image imputation and link prediction
problems. For small data sets, we compared exact NN and CSNN-α algorithms
using SDP. SDP-based matrix completion methods have provided accurate results
in various applications, including recommendation systems, image impainting, and
network analysis. While SDP can be a valuable tool, it may not always be the
most practical or efficient solution, particularly for large-scale problems. Thus for
the large-scale problem, we compare PGD and CSPGD-α algorithms.

Nuclear norm minimization offers theoretical guarantees for the approxima-
tion error of the reconstructed low-rank approximation of the data matrix. The
proposed CSNN algorithms output a solution of similar quality and result in good
time savings. For the movie recommendation problem, the accuracy of the ob-
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AUC

(a) Precision

(b) Runtime

Figure 9.11: Results for G I experiment; various link prediction algorithms.
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tained prediction is measured with NMAE and HR. Sampling 0.7 columns in
the CSNN algorithm results in predictions of the same quality as NN and is 1.4
times faster. Sampling 0.3 columns reduces mean execution time from almost 1
minute to 10 seconds and outputs predictions with moderately lower quality. We
compared PGD and CSPGD-α algorithms for α equal to 0.3 and 0.5. CSPGD-
0.3 produced recommendations of the same quality as PGD and was remarkably
faster. However, numerous modifications have been developed to enhance the
efficiency of PGD in matrix completion [197].

In the image impainting task, the quality of the recovered image was assessed
with SNR and approximation error. A higher SNR value indicates a higher quality
image with less noise and better fidelity to the original image. CSNN is an effective
strategy for recovering missing parts of pictures in scenarios with small pictures.
Sampling 0.7 columns allowed us to obtain solutions with comparably good quality
to NN and offered computational savings. For images with higher resolution, we
applied PGD-based methods. In this experiment, sampling 0.4 columns allow
us to recover images with similar SNR and relative approximation error as PGD.
The CSPGD algorithms were faster than PGD but offered smaller runtime savings
than in the case of recommendation systems. This is caused by the fact that Movie
Lens Big data sets consisted of thick matrices with columns number significantly
bigger than rows number.

Matrix completion methods can be applied in link prediction by treating the
network as an adjacency matrix, where the presence or absence of edges repre-
sents the observed or missing links, respectively. While link prediction involves
estimating missing values, it often involves considering additional factors such as
features, similarity measures, or network properties. On the other hand, matrix
completion methods focus on exploiting the low-rank structure assumption of the
matrix. The success of matrix completion for link prediction depends on the
underlying assumptions of low-rank structure and the availability of informative
observed links. Matrix completion techniques can provide reasonable predictions
if the network has a low-rank structure and the observed links capture relevant
patterns. The conducted experiment has shown that the accuracy of prediction of
MC methods was slightly worse than established link prediction methods. How-
ever, NN and CSNN, based on SDP, were dramatically slower than link prediction
algorithms.

The assumption of uniform sampling in matrix completion problems is simpli-
fied and idealized. While it can be helpful in theoretical analyses and algorithm
development, it may not always hold in practical scenarios. The observed entries
may exhibit specific patterns, biases, or other mechanisms that deviate from uni-
form sampling in many real-world scenarios. For example, in recommendation
systems, user-item ratings may be missing systematically due to user preferences
or data collection processes. However, this simplification allows for developing
efficient algorithms, theoretical analysis, and understanding the fundamental lim-
its of matrix completion [15]. Nuclear norm minimization techniques deal with
some deviations from uniform sampling if the matrix could be completed with
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uniformly sampled entries. If the solution matrix with the lowest nuclear norm
among matrices matches known entries, it will remain the solution after recovering
a non-uniformly sampled subset of its entries.
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Chapter 10

Conclusion and discussion

This thesis introduces Column Selected Matrix Completion (CSMC), a two-staged
method for the low-rank matrix completion problem. In the first stage, CSMC
applies a low-rank matrix completion algorithm for the smaller problem by ran-
domly selecting and filling the column submatrix. In the second stage, CSMC
seeks a matrix which minimizes the least squares error calculated for the filled
and previously observed entries. We designed three variants of the CSMC de-
pending on the matrix completion algorithm used in the first stage and the least
squares minimization method used in the second stage. All presented methods
used nuclear norm minimization based matrix completion methods. Nuclear norm
minimization provides an efficient and well-understood approach to matrix com-
pletion problems, with well-understood strong theoretical guarantees.

Theoretical guarantees provide a foundation of trust and reliability by ensuring
that the algorithms meet specific criteria and perform as expected. They assure
that the algorithms will generalize and provide reliable predictions or decisions.
They provide insights into the underlying principles and assumptions, guiding
the design of new models and optimization techniques. Theoretical analysis often
reveals fundamental trade-offs and helps identify the best approaches to tackle
specific learning problems. For this reason, the important part of this thesis was
to provide provable guarantees for CSMC. In particular, we show that under stan-
dard assumptions about matrix rank, matrix incoherence, size and distribution of
observed entries, solving the least squares problem in the second stage of CSMC
perfectly recovers the matrix.

We conducted several numerical simulations to verify the theoretical model
and assess the performance of CSNN, CSPGD, and CSPGD-adam algorithms. On
small random matrices, we benchmarked CSNN with off-the-shelf nuclear norm
minimization and showed that CSNN offers considerable time savings while pre-
serving the quality of the solutions. We have also compared the performance of
CSNN with matrix completion based on matrix factorization (MF) and iterative
SVD. Although MF was faster, the CSNN solution achieved a smaller relative
approximation error. To overcome performance bottlenecks of the SDP solvers,
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researchers designed various first-order methods for the relaxed nuclear norm min-
imization, including algorithms based on the proximal gradient descent (PGD).
Since PGD requires calculating the SVD in each iteration, CSPGD may limit
the computational burden. We run experiments comparing PGD, CSPGD, and
CSPGD-adam on the synthetic data set to verify this hypothesis. As expected,
in the case of thick matrices, CSPGD and CSPGD-adam are considerably faster
than PGD while preserving the quality of solutions.

Low-rank matrix completion has a wide range of applications across various
domains. In this thesis, we assessed the performance and practical significance of
the CSMC method in three real-world problems: recommendation systems, image
imputation, and link prediction in graphs. Unlike synthetic datasets, real datasets
reflect the characteristics and complexities of the actual problem domain. The
recommendation systems have significantly contributed to the research on low-
rank matrix completion due to their practical importance and economic impact.
Thick matrices may often represent such systems.

As expected, in this application, CSNN and CSPGD offered the biggest com-
putational savings. CSNN and CSPGD proved successful and efficient in the
image imputation tasks. Matrix completion methods can be applied to link pre-
diction tasks by treating the adjacency matrix of a network as the matrix to
be completed. However, it’s important to note that link prediction may involve
additional considerations specific to network analysis, such as network topology,
graph algorithms, and domain-specific knowledge, which may not be present in
the general matrix completion problem. The experiments reflected this in which
established link-prediction methods outperformed NN and CSNN algorithms.

Presented CSMC methods sampled columns according to the uniform distribu-
tion and applied nuclear norm based matrix completion algorithms. However, the
presented framework is versatile and allows employing other sampling methods
and MC methods. Recent research resulted in more sophisticated Column Subset
Selection algorithms in missing data setup. Applying such a method could han-
dle matrices with higher coherence. Another area of research is to bridge matrix
completion methods using non-convex optimization with CSS algorithms.

Algorithms for convex optimization have proven efficient in many other related
areas after the work on matrix completion. Both robust PCA and signal phase
retrieval have benefited from the insights and techniques developed in the field
of matrix completion. Researchers have drawn connections between these areas
and leveraged ideas such as low-rank matrix recovery, nuclear norm minimization,
and convex optimization to develop robust PCA and phase retrieval algorithms.
In further research, we will focus on applying Column Subset Selection to those
problems.

The success and insights gained from matrix completion methods have moti-
vated researchers to extend these ideas to higher-order tensors, developing low-
rank tensor completion techniques. By building upon the foundations established
in matrix completion, we will focus on handling tensor data in further research,
leveraging the low-rank assumption to recover missing entries and approximate
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tensors with low-rank structures.
In summary, the author’s original contribution includes:

1. The CSMC - two staged low-rank matrix completion method, dedicated
to completing rectangular matrices with one dimension significantly larger
than the other.

2. Three algorithms implementing CSMC, namely Column Selected Nuclear
Norm (CSNN), Column Selected Proximal Gradient Descent (CSPGD), and
Column Selected Proximal Gradient Descent - Adam (CSPGD-adam),

3. Formal analysis CSMC, in particular, the reconstruction error of the second
stage

4. The open-source Python 3 library with CSNN, CSPGD, and CSPGD-adam,
supporting both CPU and GPU computations,

5. The open-source library for benchmarking matrix completion methods.

6. Numerical evaluation and comparison with methods in the literature.

Data plays a fundamental role in machine learning, as it serves as the ba-
sis for training models, evaluating their performance, and making predictions or
decisions. The availability of high-quality and relevant data is essential for suc-
cessful machine learning applications. Many real-world datasets are inherently
incomplete, meaning certain entries are unknown or missing. Matrix completion
techniques aim to fill in these missing entries, enabling the reconstruction or ap-
proximation of the complete matrix.
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