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Abstract

Neurosurgery is one of the youngest and most demanding fields of medicine. It concerns

surgical interventions within the central nervous system - the system that coordinates and

influences the activity of all parts of the human body. Most neurosurgeries focus on the brain

itself. It is a delicate organ of microscopic cellular structures that require extreme precision

during the intervention. Despite the risk of impairments, such surgeries are necessary for

treating many pathologies, like glioblastoma.

The development of imaging techniques in recent decades, especially MRI, helped pro-

foundly to map important structures non-invasively. Specific modalities, like fMRI or DTI,

allow visualization of the near-precise location of functional regions and neural pathways,

respectively. These experiments result in a large amount of data that has to be thoroughly

analyzed. This task puts much work on radiologists, especially when not equipped with addi-

tional tools, like image recognition algorithms. In recent years, artificial intelligence has as-

sisted radiologists and neurosurgeons in their work through decision support systems. They

are developed to analyze experimental results landing advice for trained physicians. They

can help better plan and perform neurosurgeries by integrating with live neuronavigation

systems.

This thesis introduces a novel method for analyzing diffusion data obtained from MRI

experiments. A presented hybrid technique comprises a neural network for diffusion data

analysis and a path search algorithm computing the topology of nerve fibers based on the

analyzed data. This information is suitable for multiple applications, including estimating

the topology of the neural pathways near the surgical field or producing maps of connec-

tions between different brain functional areas. Neurosurgeons and radiologists can use such

knowledge for pre-operative planning and intra-operative navigation.
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Streszczenie

Neurochirurgia to jedna z najmłodszych i najbardziej wymagających dziedzin medycyny.

Dotyczy interwencji chirurgicznych w obrębie ośrodkowego układu nerwowego - systemu,

który koordynuje i wpływa na aktywność wszystkich części ludzkiego ciała. Większość oper-

acji neurochirurgicznych skupia się na samym mózgu. Jest to delikatny organ o mikroskopi-

jnych strukturach komórkowych, które wymagają niezwykłej precyzji podczas interwencji.

Pomimo ryzyka upośledzenia, takie operacje są niezbędne w leczeniu wielu patologii, jak

np. nowotwory mózgu (glioblastoma).

W ostatnich dekadach rozwój technik obrazowania, zwłaszcza MRI, umożliwił nieinwazyjne

mapowanie ważnych struktur mózgowych. Specyficzne rodzaje technik, takie jak fMRI czy

DTI, pozwalają na wizualizację niemal dokładnej lokalizacji regionów funkcjonalnych i ścieżek

neuronowych. W wyniku tych eksperymentów powstaje duża ilość danych, które muszą być

dokładnie przeanalizowane. Zadanie to nakłada wiele pracy na radiologów, zwłaszcza gdy

nie są oni wyposażeni w dodatkowe narzędzia, takie jak algorytmy rozpoznawania obrazów.

W ostatnich latach sztuczna inteligencja wspomaga radiologów i neurochirurgów w ich pracy

poprzez systemy wspomagania decyzji. Wspierają one analizę wyników eksperymentów da-

jąc wskazówki wyszkolonym lekarzom. Systemy dedykowane neurochirurgii pomagają lep-

iej planować i wykonywać operacje neurochirurgiczne. Niektóre rozwiązania integrują się

również z systemami neuronawigacji na żywo.

W niniejszej rozprawie prezentowana jest nowatorską metoda analizy danych dyfuzyjnych

uzyskanych w wyniku eksperymentów MRI. Przedstawiona technika hybrydowa łączy sieci

neuronowe do analizy danych dyfuzyjnych z algorytmem wyszukiwania ścieżek wyznacza-

jącym topologię włókien nerwowych na podstawie analizowanych danych. Proponowana

metoda może znaleźć wiele zastosowań, w tym do określania topologii ścieżek neuronowych

w pobliżu pola operacyjnego lub tworzenia map połączeń pomiędzy różnymi obszarami

funkcjonalnymi mózgu. Neurochirurdzy i radiolodzy mogą wykorzystać pozyskiwaną dzięki

niej wiedzę do planowania przedoperacyjnego i nawigacji śródoperacyjnej.
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1 Introduction

1.1 Problem statement

Gliomas are one of the most common primary brain tumors. They are classified into four

histological grades, with high grades, i.e. III and IV (glioblastoma) being the most frequent

[1]. Unfortunately, in the case of high grades, the prognosis for a patient is poor, given the

high invasiveness and ability to infiltrate neighboring neural tissue [2]. In addition to radia-

tion therapy, resecting the tumor mass can improve treatment outcomes.

Even though such surgeries are beneficial, they are invasive, particularly when the tumor

infiltrates significant cortical regions. Damaging these cortical structures during surgery can

impair the patient’s motor or cognitive functions [3, 4]. In addition, it is essential to keep

their connections intact. Damage to such can have similar effects as damaging cortex re-

gions themselves. To partially solve this problem, resection can be performed in several

surgeries. Only part of the mass is removed during the first surgery to keep important struc-

tures intact. Thanks to brain plasticity, the rest can be removed in consecutive attempts. It

has been shown that such regions can shift slightly on the brain’s cortex with time, allowing

it to remove more infiltrated tissue [5].

A key aspect of successful treatment is good diagnostics. Good resolution in brain visu-

alization in vivo implies a constant need to improve imaging techniques and image (signal)

processing algorithms. Different modalities of Magnetic Resonance Imaging (MRI) can be

used to examine the brain structure non-invasively [6]. The brain’s anatomy can be investi-

gated via T1 and T2 MRI sequences. In such imaging, however, only a limited set of features

can be visualized (e.g. grey and white matter). Other MRI modalities can depict other fea-

tures, such as functional MRI (fMRI), allowing visualization of functional cortex areas [7, 8].

Diffusion-weighted imaging (dwMRI) [9], particularly diffusion tensor imaging (DTI) [10],

can project all the neural connections across various regions. The information provided by

these modalities helps to build a comprehensive view of the structural and functional con-

nections between different areas of the brain.

An important part of this view is the precise location of the white matter fibers. Their re-

construction based on the diffusion signal is addressed by tractography. Many methods have

been developed to achieve this task. However, they provide a specific probability level. More-

1



over, insight from the trained radiology specialist is needed. Based on anatomical knowledge

and expertise, such an expert can assess the topology of the nerve fibers with higher assur-

ance than a single method. Besides precision being at stake, these methods usually require

multiple steps of preprocessing and fine-tuning, which makes them hardly accessible to neu-

rosurgeons.

An accurate understanding of the patient’s brain connectivity is crucial when planning

and performing neurosurgery. To make tractography more accessible to physicians special-

izing in areas other than radiology, a hybrid model based on an artificial neural network and

a path search algorithm has been proposed. This model can effectively compute the location

of nerve fibers with high probability using DTI data. Leveraging the artificial neural network

for DTI data analysis reduces the amount of preprocessing steps required. With the success-

ful implementation of this model, the system will be able to project the location of critical

cortical regions based on functional MRI data and adjacent neural connections based on the

tractography results, facilitating the planning and execution of the surgical intervention.

1.2 Motivation

Despite various methods for delineating nerve fibers, they face problems that make these

solutions not readily adaptable for preoperative planning. Tractography methods require

data cleaning before analysis. Diffusion data have noise and artifacts created by strong mag-

netic fields, and their presence can lead to suboptimal, or even erroneous, results. Moreover,

these methods tend to produce many false positives. Hence, several tractography methods

must be used to compute a fiber arrangement closely reflecting the true one. Existing arti-

ficial neural networks proposed for tractography tasks are trained for specific applications,

making these methods challenging to adapt to similar tasks, such as searching for crossing

points (joining and splitting fibers) and looking for fibers connecting two given functional

regions. To properly predict and visualize the white matter near the surgical field, it is nec-

essary to use several different tools, which creates additional work for the surgeon during

preoperative planning.

1.3 Aims and thesis statement

Research carried out and described in this dissertation focused on designing an artificial

neural network coupled with an effective path search algorithm. Using an artificial neural
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network for diffusion data processing will allow using data subjected only to preliminary

preprocessing steps. In addition, processing the data in small batches allows training of the

model on small datasets, given a single scan provides numerous training examples. Adapt-

ing a path search algorithm will allow for determining fibers near the surgical site, connect-

ing different brain areas, and differentiating fiber crossing points. The hybrid model adds

explainability as the artificial neural network computes the graph fed into the path search

algorithm. Therefore, it is possible to analyze the data from which the fiber was computed.

In summary, this thesis states the following:

Artificial neural network coupled with a path search algorithm is an effective and effi-

cient method to compute tractograms.

The formulated thesis was proved by carrying out the following research tasks:

• development of a method for creating labels based on tractograms obtained by various

techniques from diffusion data,

• designing and training of the artificial neural network (ANN) for diffusion data pro-

cessing,

• implementing a modified variant of the A* algorithm for a path search in a graph build

based on the ANN output,

• implementing an automated pipeline to compute tractograms on real data,

• carrying out a series of experiments, showing the results of the automated pipeline on

real data.

An automated pipeline allowing to use hybrid method consisting of ANN coupled with a path

search algorithm for tractography was implemented and named HyTract (HT). In the future,

this method will be used in real-life preoperative planning as a part of the decision support

system for neurosurgery.
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1.4 Structure of the dissertation

This thesis is composed of ten chapters:

- The first chapter introduces the problem statement, motivation, aims, and a thesis

statement regarding the hybrid model.

- The second chapter describes the medical background - the anatomy of the central

nervous system, including the organisation of white matter within the brain. Gliomas

are described, together with their treatment. This chapter also characterizes magnetic

resonance imaging and preoperative planning with tractography as crucial steps be-

fore brain surgery.

- The third chapter focuses on artificial neural networks, describing the principles be-

hind their design and training. This chapter concludes with an overview of available

AI methods in medicine, with special emphasis on decision support systems.

- The fourth chapter describes path search algorithms.

- The fifth chapter describes related works in tractography, divided into mathematical

models and machine learning approaches.

- The sixth chapter defines the hybrid method for tractography, HyTract. It character-

izes the general overview, architecture of the neural network, and adaptation of an A*

algorithm for path reconstruction.

- The seventh chapter describes the processing and analysis of the diffusion data. It

contains a description of the usual preprocessing steps, as well as a description of how

the labels for training and validation of the neural network were prepared.

- The eighth chapter describes the experimental setup and the dataset used for train-

ing and validating the HyTract ANN. The results of all experiments carried out are de-

scribed. The chapter ends with the experimental results discussion.

- The ninth chapter focuses on the HyTract as a whole. Experimental setup and dataset

for testing HyTract on real data are described, followed by experimental results. The

chapter concludes with a results discussion.

- The tenth chapter concludes the thesis.
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2 Medical background and challenges in modern neurosurgery

2.1 Introduction to Neurophysiology

2.1.1 Functional anatomy of the brain

The human nervous system is divided into peripheral (PNS) and central nervous systems

(CNS). The peripheral nervous system involves cranial and spinal nerves, which are respon-

sible for communicating all body parts with the CNS. The central nervous system has two

main parts: the brain and the spinal cord. The brain resides in the cranial cavity of the skull,

while the spinal cord is in the vertebral canal.

Figure 2.1: Anatomy of the brain [11]

The brain is subdivided into the medulla, pons, cerebellum, midbrain, diencephalon and

two cerebral hemispheres (Fig. 2.1) [11]. The latter is the most highly developed part of the

CNS. A long cleft-longitudinal fissure and the diencephalon separate the two hemispheres.
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The brain’s surface, the cerebral cortex, is highly convoluted, which is an evolutionary adap-

tation to accommodate greater surface area in the limited space of the skull. Elevated parts of

convolutions are named gyri. They are separated by grooves called sulci or fissures. Beneath

the brain’s surface are many essential structures, including nerve fibers providing informa-

tion transfer between different parts of the cortex.

Nervous tissue, building both PNS and CNS, has two major types of cells: neurons and

glial cells. Neurons are responsible for the nervous system’s primary function and produce

electric potentials. Glial cells, on the other hand, do not take an active part in signalling but

provide support and protection for neurons [12].

Neural cells consist of the cell body and extensions called processes. An axon is one of

the processes that is always elongated and connects a neuron with its target (e.g. another

neuron/neurons). A single neural cell always has only one axon, which can branch into axon

terminals, allowing a neuron to connect with many target cells. Shorter processes are present

in bigger numbers and are called dendrites. They connect with axons of other cells and are

responsible for receiving input (Fig. 2.2). In hemispheres, neural cell bodies stacked in lay-

ers form a cerebral cortex. Their axons, organized in bundles, form nerve fibers. Due to

the myelination of the axon (discussed in more detail in section 2.1.2) they have a whitish

color, contrary to the cell bodies, which are grayish. Hence the cortex is made of gray matter

with white matter below. This division is noticeable in medical imaging (Fig. 2.9) or on the

specimens from the brain dissection.

Different parts of the cerebral cortex correspond to different functions. The surface is

split into four lobes named after cranial bones overlying them: frontal, parietal, occipital

and temporal. In 1909 German anatomist Korbinian Brodmann published maps of func-

tional cortical areas in humans, monkeys, and other species [14]. He defined those regions

based on the cytoarchitectural organization of neurons (Fig. 2.3). Since then, proposed ar-

eas have been debated and refined by the field, and nowadays, they are the source of coarse

localization of the functional regions in the cortex.

Three of the specified areas were of particular interest to the topic of this thesis. Two

of them, Brodmann area 44 (BA44, pars opercularis) and 45 (BA45, pars triangularis), are

described as the Broca area (Fig. 2.3). This area is located in the frontal lobe of the dom-

inant hemisphere (usually left) and is linked functionally with speech production. Pierre

Paul Broca discovered this link by observing two patients who lost the ability to speak after
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Figure 2.2: Neural cell [13]

injury to pars triangularis (BA45). Since then, a deficit in language production is known as

Broca’s aphasia. Recent fMRI studies have shown that speech production can also be linked

to other areas, described together as the Broca region [15].

Brodmann area 22, called Wernicke’s area, is located in the superior temporal gyrus in the

dominant hemisphere (Fig. 2.3). It is functionally and anatomically connected with Broca’s

area and is responsible for comprehending written and spoken language. Injury to that part

of the brain results in fluent aphasia. In this case, a person connects words fluently; however,

the sentences lack meaning.

Even though the localization of these areas have been established and debated through

experiments throughout the years, their precise location differ among patients. Therefore it

is essential to investigate their precise location before any surgical interventions involving

nearby areas to avoid unnecessary damage leading to impairments.

2.1.2 White matter and neural circuits within the brain

The inner part of both hemispheres consists predominantly of white matter. It is formed by

axons of the neural cells, which transfer the information as action potentials (Fig. 2.4). Infor-

mation is always conducted from the cell body through the axon to the axon terminals and

then to other neurons. Axons are tightly surrounded with myelin sheath made by Schwann

cells and oligodendrocytes, two types of glial cells. It is rich in a fatty substance called myelin,
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Figure 2.3: Brodmann’s map of the brain cortex [14]

giving the axons a whitish color. In addition to its protective function, this envelope allows

action potentials to be conducted with increased velocity. It is possible due to constrictions

on the surface, called the Nodes of Ranvier (Fig. 2.4). Instead of being carried along the entire

length of the axon, the potentials jump between these constrictions.

Neural circuits are formed by connecting axon terminals with dendrites of other neu-

ral cells at the synapses. A schematic representation of the synapse is shown in Fig. 2.5.

The neuron serving as a source of information is called a presynaptic neuron, and the neu-

ron receiving information through dendrites is named a postsynaptic neuron. Most often,

Figure 2.4: Schematic representation of an axon
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Figure 2.5: Schematic representation of a synapse

a synapse is not a continuous connection between two neurons, and neurotransmitters me-

diate the transmission of information. These small molecules are secreted by the axonal

terminus to the synaptic cleft and recognized by the receptors on the dendrite membrane.

Bundles of axons have unbelievably many names, but the most common is a tract. They

serve as a signal transmission medium between different brain parts and the brain, periph-

eral organs, and tissues. Fig. 2.6 depicts some of the most common neural fibers in the

human brain. Based on their role, tracts can be divided into the association, commissural

and projection fibers.

Association tracts connect cortex areas located in the same hemisphere. While short

fibers connect gyri within the lobe, long ones connect areas in different lobes of one hemi-

sphere [16]. The cingulum and superior longitudinal fasciculus (SLF) are two primary ex-

amples of association fibers. The cingulum allows communication between components of

the limbic system. It projects from the cingulate gyrus to the entorhinal cortex [11]. The

SLF subdivides into FSL I, II, and III. It connects the frontal, occipital, parietal and temporal

lobes [17]. All discussed fibers are depicted in Fig. 2.6.

Commissural tracts connect cortical areas in the two hemispheres and allow them to

communicate with each other. Connections between the hemispheres are called commis-

sures. Most of the fibers pass through the corpus callosum. It is the biggest commissure and

the largest white matter structure at the same time. Two other essential commissures are

anterior and posterior commissures [11].
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Figure 2.6: Main neural tracts of the human brain [18]

Projection fibers connect the cortex with the corpus striatum, diencephalon, brainstem

and spinal cord, allowing communication between the brain and the rest of the body. As-

cending tracts communicate sensory information to the brain, while descending tracts com-

municate motor information from the brain to peripheral organs through the spinal cord

[11]. Examples of these can be observed in Fig. 2.6 as cortico-spinal and cortico-pontine

tracts.

Before the invention of diffusion-weighted imaging, tracking neural fibers was possible

only with post mortem dissection of the brain. The development of MRI techniques allowed

the investigation of these structures in vivo. Details of these techniques will be discussed in

the following sections.

2.1.3 Gliomas and their treatment

Malignant gliomas are the most common primary brain tumor, accounting for about 80% of

cases. Due to poor prognosis and deterioration in the standard of living, including worsening

cognitive function, it is a very harmful and invasive kind of cancer [2]. They easily infiltrate

nearby parenchyma but are limited to CNS and do not metastasize. The World Health Or-
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ganization (WHO) classifies gliomas into four histological grades. From grade I to grade IV,

the degree of undifferentiation, anaplasia and aggressiveness increases. [1]. The most com-

mon are grade IV and grade III. Grade II tumors are less differentiated but may progress into

higher-grade tumors.

The most common symptom is a unilateral headache associated with the same side of

the head as the tumor location. Nevertheless, it can still be mistaken for benign headaches.

Similarly, other symptoms like cognitive dysfunctions and personality changes might be mis-

taken for psychiatric disorders or dementia, especially if observed in older patients. The best

diagnostic tool is an MRI scan, with CT reserved for people who cannot undergo MRI scan-

ning (e.g. patients with pacemakers). Even though gliomas are easily identifiable with an

MRI, wide screening is not advisable since early diagnosis and treatment do not improve

outcomes [2].

Corticosteroids, e.g. dexamethasone, may reduce the severity of neurological symptoms.

However, they might cause side effects, especially when CNS lymphoma is present. In pa-

tients with seizures, antiepileptics are required. Regardless, there is no evidence of benefit

from the prophylactic use of these drugs. Patients with suspected cancer are advised to un-

dergo tumor resection surgery. That way, more detailed mass characterization is possible,

including grading [19]. Resection of such a mass is a difficult task. Especially considering the

possibility of infiltration into the surrounding functional cortical regions. Imprecise surgical

intervention may cause damage to functional regions or nerve pathways adjacent to these

areas, leading to patient impairments - motor or cognitive.

Therefore, detailed planning should be performed before intervention occurs, including

studies using functional MRI and diffusion MRI.

2.2 Magnetic Resonance Imaging

2.2.1 Introduction to MRI

Magnetic resonance imaging (MRI) allows for imaging of the anatomy and physiology of the

body. It uses a very strong magnetic field and radio frequency waves during the scan, making

it completely non-invasive. In contrast to other radiology techniques, such as X-ray, com-

puted tomography (CT) or positron emission tomography (PET), it does not use radiation or

ionization, making it completely safe for the patient. MRI was initially used for anatomical

depiction. However, with the development of different MRI modalities, the clinical applica-
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tions nowadays are very wide, including neurology, cardiology and psychiatry.

Figure 2.7: Cross-section of an MRI scanner

The MRI scanner consists primarily of superconducting wire introducing a huge mag-

netic field (Fig. 2.7). It is kept at a very low temperature with liquid helium to allow super-

conductivity. The magnetic gradient coil is closer to the scanner bore where the subject is

placed. It allows for the introduction of a variation in the local magnetic field. This process is

crucial for the proper signal acquisition from the whole subject volume. Characteristic noise

heard during the MRI scan is caused by these gradient coils switching very rapidly. Closest to

the patient is the radio frequency (RF) transmission coil, which excites protons in the body

(the working principles explained later in the text). Coils receiving emitted energy are placed

close to the body and are not attached to the magnet’s bore.

Hydrogen atoms in the human body have random alignment when no strong external

magnetic field is applied (Fig. 2.8 A). These nuclei align with the lines of the magnetic field

introduced by the scanner and thus are in a low-energy state (Fig. 2.8 B). Pulses of radio

frequency (RF) energy are then emitted and absorbed by the hydrogen nuclei, which effec-

tively change into a high-energy state. When radio frequency emission ceases, the hydrogen

atoms return to the low-energy state through various relaxation processes and emit back the

energy captured by the device as an echo signal (Fig. 2.8 C). The difference between the

excitation time and the echo signal is the relaxation time used to create the contrast using
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Figure 2.8: Protons behaviour in MRI

Fourier transformation to convert frequency information to intensity levels displayed on the

final images as a grey gradient. Different tissues in the body have different relaxation times,

which makes it possible to observe individual anatomical structures with MRI. The high sen-

sitivity of these measurements allows distinguishing even between soft and similar tissues,

such as the grey and white matter of the brain.

Distinct images can be obtained by tuning the appropriate parameters of the experiment.

The two main are repetition time (RT) and time to echo (TE). Repetition time describes the

time interval between separate pulses of RF energy emitted toward the sample. Time to echo

is the delay between delivering the radio frequency pulse in a particular location and receiv-

ing the echo signal.

The most common are T1 and T2 modalities, used for anatomical depiction (Fig. 2.9).

T1-weighted images are constructed by using short TE and TR times to measure spin-lattice
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relaxation (the time it takes nuclei to realign with the magnetic field). T2-weighting uses

longer TE and TR times to measure spin-spin relaxation transverse to the magnetic field.

Certain tissues appear different on T1 and T2 images. Cerebrospinal fluid (CSF), present in

the ventricles and surrounding the cortex, appears dark on T1 and bright on T2; gray matter

is much darker on T2 than on T1; the white matter is bright on T1 and dark on T2 (Fig. 2.9).

In addition to differences in color, each of these modalities provides benefits in diagnosing

various abnormalities like infections, edema, or tumors.

Figure 2.9: Exemples of T1 and T2 images

In addition to T1 and T2 images, two other modalities are widely used in neurosurgery:

functional MRI (fMRI) and diffusion-weighted MRI (diffusion-weighted imaging, DWI). The

latter is the basis for tractography and will be discussed in more detail in the following sec-

tion 2.2.3.

2.2.2 Functional MRI

Functional MRI allows radiologists and researchers mapping of different tasks to brain re-

gions in a given individual. As neurons performing tasks require more oxygen and nutrients,

the active brain region requires increased blood flow. Oxygen is transported in the blood

by hemoglobin, a protein containing an iron atom. Oxygen binds to the iron atom, making

it ’rust’ temporarily. Since normal and rusted iron influence the magnetic field differently,

14



we can measure the difference between oxygenated and non-oxygenated blood using MRI.

Because the contrast is obtained due to blood oxygenation level, this technique is called

blood-oxygen-level-dependent imaging (BOLD). Mapping a particular activity, like speak-

ing, hearing, tapping finger, etc., is challenging as this activity has to be separated from oth-

ers (e.g. hearing). It can be achieved using special paradigms prepared by neuropsycholo-

gists. These contain instructions for the patient to follow to activate brain regions responsi-

ble for the task under investigation, silencing other parts of the brain simultaneously.

The activity in a given cortex area is coupled with increased blood flow as active neurons

have higher requirements for oxygen and nutrients [20, 7]. Since neural cells do not retain

any energy reserves in the form of sugar or oxygen, these compounds must be delivered

quickly. Therefore, it is possible to measure brain activity by detecting changes associated

with blood flow [21]. The coupling between neural activity and an increased blood flow is

called hemodynamic response. A special sequence of pulses in MRI allows using blood-

oxygen-level-dependent (BOLD) as a contrast to map functional regions. As shown in figure

2.10, the BOLD signal increases about 5 seconds after neuronal activity occurs. This time is

needed for the vascular system to respond to the brain’s need for glucose and oxygen. When

the activity ceases, it falls below the original level, what is described as the post-stimulus

undershoot, and with time recovers to the baseline [22].

Presurgery studies aim to identify regions related to critical functions like speech pro-

duction and comprehension, moving limbs, or sensing. Clinical use is much harder given

that brain pathology, and the use of drugs can lead to changes in the blood flow that are not

related to neuronal activity [23]. In this type of diagnostics, it is extremely important to sepa-

rate the functionality under investigation from the background signal and other involuntary

activity. For this particular purpose, neuropsychologists design special studies paradigms

which help to achieve this goal.

2.2.3 Diffusion-weighted MRI

Diffusion-weighted imaging (DWI) is an MRI technique using special sequences of pulses to

obtain image contrast from the movement of different molecules in the body [24, 25]. The

most common molecule to track with this technique is water, present in all human body

cells. Water movement in tissue is not completely random due to natural obstacles such

as cell membranes and organelles. Therefore, patterns of water diffusion can unveil micro-
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scopic details of tissue architectures.

Figure 2.10: BOLD response [26]

Figure 2.11: Water movement in neural cell

In the case of cells with elongated shapes, the major direction of water movement is in

line with the longest axis. Thus tracking the movement of water molecules allows for deter-

mining the microscopic details of the tissue. In such an image, the intensity of a particular
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voxel reflects the rate of water diffusion and can lead to many applications. One of the most

interesting ones is the trajectory of neural fibers (Fig. 2.11). A special kind of diffusion imag-

ing, Diffusion Tensor Imaging (DTI), aims not only to produce contrast from the diffusion but

also to estimate the trajectory of neural tracts [10]. In practice, a DTI study contains a series

of measurements obtained with distinct orientations of diffusion-sensitizing gradients. This

information can be used by tractography methods developed to follow neural tracts within

the brain.

2.3 Preoperative tractography

Every neurosurgical intervention is preceded by detailed planning. At this stage, an optimal

entry site and the scope of intervention are determined. A procedure prepared in this way

reduces the risk of complications, including motor or cognitive impairments.

Planning begins with a detailed patient examination using various MRI imaging tech-

niques. First, anatomical imaging (T1 and T2 scans) is performed to determine the precise

location of the tumor mass. In the next step a study using functional imaging (fMRI) is per-

formed, considering the subject variance in the location of eloquent cortical regions. Such

a study allows to map functional regions proximate to the tumorous mass. Based on the

coarse localization derived from functional atlases, the clinician can narrow down the list

of tasks to be examined. The narrowing is essential for a fast diagnosis, given quite lengthy

experiments.

Another modality used before the surgery is diffusion tensor imaging (DTI). This data

can be used to elucidate the topology of the nerve fibers localized in close proximity to the

potential site of intervention. A procedure aimed at determining neural fiber arrangement

is called tractography, and the bundles of neural fibers are often referred to as tracts. Track-

ing (reconstructing fibers) starts with a seed. Tractography itself answers many interesting

questions regarding the functioning of the human brain. However, its application in neuro-

surgery has very specific aims.

Simply determining the location of nerve fibers near the surgical field is not enough.

Without knowing their origin or destination, one cannot make a prognosis about side ef-

fects caused by eventual damage. Hence, preoperative tractography shall be coupled with

fMRI experiments.

With this detailed information, the neurosurgeon can precisely plan an entry site and the
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scope of the intervention that will impose the smallest risk of damaging critical tissue. Fur-

thermore, neuronavigation systems help to achieve this goal by visualizing all the necessary

information during surgery. They are fed with anatomical images but lack information about

functional areas or topology of the nerve fibers.
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3 Artificial neural networks and their applications in medicine

3.1 Introduction to Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models inspired by the brain’s neural

networks. Such ANN consists of connected nodes based upon biological neurons. The out-

put of the single neuron results from executing a nonlinear function on the sum of its inputs.

Artificial neurons (nodes) are connected with others by edges. Both nodes and edges have

weights that change during the learning process and thus constitute the model’s parameters.

Models achieve their skills in the training process. Training is a process in which the

network is presented with input data (the sample) and corresponding expected output (the

label). After the network processes the input data, its output is compared with the expected

result. This comparison is made using the loss function, which maps the difference between

the two onto a real number. Mathematically, ANN training is a problem of optimizing the loss

function. It is achieved through backpropagation and usage of the optimization technique.

Backpropagation and different loss functions will be discussed in the following sections.

Many different ANN architectures have been proposed to tackle different tasks. The most

general ones are perceptrons and feedforward neural networks (FFNN). Problems related to

image recognition and classification are usually solved using convolution layers, where the

network learns the weights of filters used on the input images. Sequential data, like text or

video, require architectures to extract information encoded in a sequence of inputs. These

architectures are usually a sub-type of recurrent neural networks (RNN), best suited for con-

tinuous signal or prognosis problems.

3.1.1 Perceptron and feedforward networks

Designing a neural network for a given task is non-trivial, as many parameters must be con-

sidered. Neural networks consist of stacked layers processing input information into the

desired output envisioned by the training label. Before discussing different kinds of layers, it

is crucial to focus on their main building block - an artificial neuron.

A function of an artificial neuron can be easily related to the biological neuron (Fig. 2.2,

and Fig. 2.4). It receives input information (a vector of features) and produces a scalar value

output. The most basic neural network is a perceptron that can be trained for a binary clas-
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Figure 3.1: Architecture of McCulloch-Pitts neuron and modern artificial neuron

sification task [27]. Figure 2.2 represents a diagram of such architecture, a single McCulloch-

Pitts neuron, otherwise known as a threshold neuron. Input data vector x1, x2, . . . , xn , and

a set of weights w1, w2, . . . , wn are used to compute an output (y). For binary classification

with unipolar activation function ( f (ϕ)), output values take

y = f (ϕ) =


1, ϕ> 0,

0, ϕ≤ 0,
(1)

where

ϕ=
n∑

n=1
wi xi −θ, (2)

where θ is the threshold value of the activation function and n number of inputs. A single

perceptron can be used for binary classification tasks, whereas additional neurons must be

used for classification with more than two classes. Moreover, a single-layer perceptron is

suitable for learning patterns that can be separated linearly, as Marvin Minsky and Seymour

Papert showed that a single-layer perceptron cannot learn XOR function [28]. Neurons used

today take a slightly different form than the McCulloch-Pitts neuron (Fig. 3.1). In this model,

θ is replaced by bias b, added to the result of multiplying the input data and weights, resulting

in the neuron transfer function:

ϕ=
n∑

n=1
wi xi +b. (3)

The unipolar activation function is replaced by a nonlinear activation function, such as

a rectified linear unit (ReLU) [29].

Such artificial neurons are organized into stacked neural layers building modern artifi-
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Figure 3.2: Three basic layers of a feedforward neural network

cial neural networks. Figure 3.2 depicts a schematic representation of three types of neural

layers building a fully connected feedforward network, with circles representing single neu-

rons within the layer and arrows depicting weighted connections between them [30]. The

first is the input layer, accepting the input data passed to the other layers. With one or more

hidden layers, neural networks can perform complex analyses of the data they receive. They

are responsible for data transformation and feature creation. The last layer in a neural net-

work is the output layer. It processes an output of the last hidden layer, called the last hidden

state, to the desired output. An indispensable feature of a feedforward network is that con-

nections between the nodes do not form a cycle. Such cycles can be formed in recurrent

neural networks (discussed in the following section). Fully-connected layers are the most

abstract types, having the potential to learn the same tasks as any other layers. However,

designing and training such a network is tedious, and specialized neural layers shall be used

for particular input data.

3.1.2 Convolutional neural networks

Convolutional neural networks (CNN) were developed for processing data with grid-like

topology. They are most often used for image processing since an image can be viewed as

a two-dimensional grid of pixels [31].
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Figure 3.3: An example of convolutional network architecture

In a typical convolution network, convolution layers (or blocks of such layers) are typi-

cally followed by a pooling layer and fully connected layers. An input image data is of shape

N ×Ci n × H ×W , where N is the batch size, Ci n is the number of channels, and H and W

are height and width of the image respectively. The convolution operation performed by the

convolution layer is a dot product of the convolution filter with the input tensor. As the filter

slides through the input, the dot product of the operation adds to the feature map produced

by the layer. The filter has a specific, predefined size, e.g. 3 x 3 pixels, called the kernel size.

The amount of movement between the filter and the input, in the width and height dimen-

sions, is called the stride. The default stride is (1,1) and indicates movement by one pixel in

both directions. The resulting tensor has dimensions N ×Cout ×Hout ×Wout and is the input

tensor of the next layer.

The pooling layer can be used globally to process the final feature map produced by the

last convolution layer or between two convolution layers. It reduces the dimensionality of

a tensor by combining the outputs of neuron clusters from one layer to the single neuron of

the next. Clusters commonly used are small, usually with 2×2 or 3×3 tilling size [32, 33], and

the either maximum value is used (max pooling), or the average (average pooling) [34, 35].

The final output is produced by fully connected layers, which process a feature map pro-

duced by convolution layers into final classification. To obtain a vector of probabilities for

each class, a softmax function is used. It turns an output of the last dense layer into a proba-

bility distribution of K outcomes, where K is the number of target classes.

Convolutional layers can be used in more complex architectures as well. An example is

an autoencoder developed for masking image data. The encoder part of the model allows

to mask image so it can no longer be identified visually without using a decoder. Encoded

version however, still carries information allowing for classification [36].
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Figure 3.4: Recurrent neural network

3.1.3 Recurrent neural networks

Many types of data are sequential. One of the best examples is speech, where individual

words have little meaning, and the entire message of the utterance is hidden in their proper

sequencing. Traditional neural networks cannot analyze such data effectively as they pro-

cess information one sample at a time. For proper reasoning from sequential data, a mem-

ory mechanism is required. Recurrent neural networks (RNN) achieve this by introducing

cycles to the graph of node connections between layers [37]. Hence, they can reason about

sequential data in tasks such as recognition of speech [38, 39] or unsegmented handwriting

[40]. Figure 3.4 describes the idea behind creating cycles within the network. Given a set of

sequential data x1, x2, . . . , xn , each layer of the network computes its hidden state, denoted

by h1,h2, . . . ,hn , which is saved and passed as a second input to the next layer (green arrows).

In the case of the first layer, a “hidden state” input is a vector of random numbers from a par-

ticular distribution.

RNNs work very well when the task requires context only from the recent elements of

the sequence. In theory, they are capable of learning long-term dependencies. However,

when RNN is trained with backpropagation, the long-term gradients can easily vanish (when

tending to zero) or explode (when tending to infinity). It is caused by computations that use

finite-precision numbers. When the gap between context and task increases, performance

deteriorates. A special kind of RNNs, the Long short-term memory (LSTM) network, partially

solves a vanishing gradient problem, as they allow gradients to flow unchanged [41]. They

also use special mechanisms allowing them to learn long-term dependencies. At their core
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is the cell state which is protected and controlled by three gates: forget, input/update, and

output. In this arrangement, a forget gate decides what portion of the information is unnec-

essary for the task and shall be forgotten. The input gate decides what shall be updated and

how. The last gate decides what information the layer shall output.

3.1.4 Attention mechanism

Many artificial neural networks include attention mechanisms in their architectures. This

technique was developed to mimic cognitive attention [42, 43, 44]. It enhances some parts

of the input data while reducing the importance of other parts. It follows the notion that not

all features are equally relevant to the task, and the neural network should focus mainly on

the crucial ones.

In recent years, attention gained popularity when Transformer architecture was intro-

duced [45]. It relies on attention for capturing global dependencies between input and out-

put. Authors achieve this by replacing completely recurrent layers with multi-headed self-

attention. Such architecture has better parallelization capabilities and trains faster than the

standard approach, achieving state-of-the-art performance at the same time.

3.1.5 Training neural networks with backpropagation

Originally backpropagation (backprop) was an algorithm for training feedforward neural

networks. Nowadays, many algorithms for training different ANN architectures fall under

this generalized term. Backprop calculates a gradient of the loss function during training,

considering all of the model’s weights. Such an approach allows greater efficiency than the

classical one, where the gradient is computed individually for each weight. This makes back-

prop suitable for training multilayer networks with ease [31].

In the case of the multilayer network, the derivatives of the layer weights cannot be sim-

ply calculated with respect to the loss function as in a single-layer network. This is especially

important given that all architectures nowadays include nonlinear transfer functions called

activation functions. To calculate derivatives, backpropagation uses a chain rule from calcu-

lus and is generalized by automatic differentiation - a special case of reverse accumulation as

in (). A gradient is computed for each layer separately, iterating backwards from the last layer

to the first (hence the term backward propagation). This prevents redundant computing of

the intermediate terms in the chain rule.
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Following the chain rule a derivative for the loss function L (ŷ , ȳ) in respect to weight wn

in case of a single neuron (Fig. 3.1) can be calculated as follows:

∂L

∂wn
= ∂L

∂y

∂y

∂wn
= ∂L

∂y

∂y

∂ϕ

∂ϕ

∂wn
, (4)

where ϕ is the output of the transfer function as in (3), and y is the output of an activation

function. The derivative of a neuron output y with respect to its input is the derivative of an

activation function, which for backpropagation to work has to be differentiable:

∂y

∂ϕ
= ∂ f (ϕ)

∂ϕ
(5)

Many optimization algorithms can be used to train neural networks. Among them, two

are the most common: Stochastic Gradient Descent (SGD) [46] and Adam [47]. SGD is

a stochastic approximation of gradient descent, where the gradient is not computed for the

whole dataset. SGD uses its approximation calculated on the randomly selected data subset.

Such computation takes less time than the traditional method. Hence the time required for

training is much smaller.

Adam optimizer is another method for efficient stochastic optimization. Based on the

first and second moments of the gradients, it computes individual adaptive learning rates

for different parameters. This method is memory efficient as it only requires first-order gra-

dients. Nowadays, it is the most commonly used algorithm for training neural networks.

Foret et al. propose a Sharpness-Aware Minimization (SAM) method to minimize both

the loss value and the sharpness of the loss [48, 49]. It focuses on the set of weights in the

neighbourhood of uniformly low loss. With experiments on the benchmark datasets and

models, authors argue that using their optimization method can lead to state-of-the-art per-

formance with label noise robustness.

3.1.6 Activation functions

If we stack multiple fully-connected layers together, we could achieve the same goal with

one fully-connected layer with more neurons and weights. Adding non-linearity in the form

of activation functions allows for representing more complex functions. One of the core,

broadly used activation functions is a sigmoid function, accepting as an input, neuron out-
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Figure 3.5: The Sigmoid and Hyperbolic Tangent activation functions

put ϕ as denoted in Fig. 3.1. Sigmoid function f (ϕ) is expressed as

f (ϕ) = 1

1+e−ϕ , (6)

which plot is presented in Figure 3.5. It assumes values in the range of [0,1], hence it is often

used to transform the real value output of the layer into a likelihood.

Another example is a hyperbolic tangent function (Tanh):

Tanh(ϕ) = exp(ϕ)−exp(−ϕ)

exp(ϕ)+exp(−ϕ)
, (7)

which has a bigger range of output values, Tanh(ϕ) ∈ [−1,1] (Fig. 3.5). Due to the negative

values of the output this function could not be used as a probability projection.

The commonly used is Rectified Linear Unit (ReLU), which is a simple maximum func-

tion:

ReLU (ϕ) = max(0,ϕ). (8)

This method essentially activates only those neurons that output values equal or greater than

1 (Fig. 3.6). Leaky ReLU is a very similar function, however in that case also neurons produc-

ing small negative values are activated:

Leak yReLU (ϕ) = max(0,ϕ)+ s ·min(0,ϕ), (9)
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Figure 3.6: The ReLU and Leaky ReLU activation functions

where an s parameter controls the slope of the negative side and, by default, is set to s = 1e−2

(Fig. 3.6).

When choosing the right activation function for the network, it is important to consider

the range of returned values and their derivate. Due to backpropagation and the chain rule,

the latter profoundly impacts how the network learns from the data. In the case of the sig-

moid function, its derivate values are in the range [0,0.25] and with an ϕ tending to −∞
and +∞, the gradient converge to 0 (Fig. 3.5). This can contribute to the vanishing gradient

problem. Such a situation occurs when the input values from the earlier layers increase, and

the gradient becomes so small that it cannot involve the correction. The gradient of the loss

function ∇L at a given layer l , where l = 1. . .L is the gradient at its subsequent layer Ll−1

multiplied by the gradient of the activation function f (ϕl ):

∇Ll =∇Ll−1 ·∇ f (ϕl ). (10)

If the gradient value is less than 1, the gradient on the layers distant from the output

will tend to 0. Layers with a gradient converging to 0, will stop the gradient propagation to

the farthest layers. Tanh function counters this problem by increasing the maximal gradient

value. However, it produces gradient values greater than 0.25 for the small range of ϕ values

(Fig. 3.5). The vanishing gradient problem is solved for ReLU and LeakyReLU functions, as all

activated neurons returning positive values have a gradient value of 1 (Fig. 3.6). Despite that,
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ReLU introduces another problem known as the dead neuron or the dying ReLU problem.

Gradients of all inactive neurons are equal to 0, which can result in the consistently inactive

neuron.

3.1.7 Loss functions

Choosing the right loss function is extremely important in training a neural network. This

function compares the expected result (a label, denoted with ȳ) with the network’s actual

output denoted by ŷ . The result mapped onto the real number directly impacts how the op-

timization algorithm updates the model weights. The wrong choice can result in a subopti-

mal or incorrect representation of the differences between the output and the label, pushing

the model weights toward achieving a different goal.

The most simple loss function is 0-1 loss:

L (ŷ , ȳ) =


1 for ŷ ̸= ȳ ,

0 for ŷ = ȳ ,
(11)

where ŷ is the output of the network, and ȳ is the label. In practice, this indicator function

returns either 0 or 1, which is not very useful in learning with optimization algorithms, as it

does not provide information about how far the current solution is from the expected one.

A more informative loss function is quadratic loss:

L (ŷ , ȳ) =C (ŷ − ȳ)2. (12)

In this equation, C is the constant value and is usually ignored by setting C = 1, resulting in

the basis for calculating Mean Squared Error (MSE). Before defining an MSE loss function in

(15), we will define a loss function for a batched input. Given the batch size is M , the loss

function can be described as:

L (ŷ , ȳ) =L = {l (ŷ1, ȳ1), . . . , l (ŷM , ȳM )}. (13)

If we consider (12) and set C = 1 for batched input as in (13), we end up with MSE loss for

a batched network output:

l (ŷm , ȳm) = (ŷm − ȳm)2, m ∈ [1, M ]. (14)
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The MSE is defined as the mean of squared errors of all examples:

MSE = 1

M

M∑
m=1

(ŷm − ȳm)2, m ∈ [1, M ]. (15)

Even though MSE loss is much more informative in comparison to 0-1 loss, many ap-

proaches use Cross Entropy (CE) to calculate the loss between input features and desired

labels. Given the classes indices are in the range k ∈ [0,K ], where K is the number of classes,

and M is the batch size as in (13), a CE loss function can be described as follows

L =−
K∑

k=1
ȳk log(ŷk ), (16)

where ȳk is the true label, and ŷk is the Softmax probability for the k-th class. A CE loss can

be used for multi-class and binary classification problems. However, for the latter, a Binary

Cross Entropy (BCE) is more suitable

L =− 1

M

M∑
m=1

ȳm · log ŷm + (1− ȳm) · log (1− ŷm), m ∈ [1, M ]. (17)

A softmax or sigmoid function usually has to be applied to the network output before

using these loss functions. Programming libraries, such as PyTorch, provide versions of the

loss functions mentioned above, operating directly on logit probabilities obtained from the

last layer. Some evidence from the field suggests that using these lays better results.

3.2 Application of machine learning in medicine

3.2.1 Genomics and proteomics

Even though genomics and proteomics are considered basic sciences, their developments

have a direct effect on medicine. Due to the massive amounts of data produced by next-

generation sequencing, its analysis is impossible without advanced algorithms, including

machine learning and deep learning. Such methods helped to sequence SARS-CoV-2 genome,

identify its variants, as well as design treatments, including vaccines [50]. Lowering the costs

of genome sequencing allows the inclusion of genetic information in the diagnosis and treat-

ment process. As shown by Sun et al. [51], SVM [52] is one of the available methods that can

be used to seek genes causing diseases such as cancer or diabetes. The availability of large-

scale data allows for studying the evolution and structure of proteins [53, 54, 55]. This is
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crucial to understanding the biochemical basis behind diseases and developing new drugs

[56, 57].

3.2.2 Clinical decision support systems

Computerized clinical decision support systems (CDSS) provide significant assistance in

diagnosis and treatment [58]. Such a system can use provided and computerized clinical

knowledge to interpret patient characteristics. It makes it easier to integrate the clinician’s

experience, the patient’s value and scientific knowledge in evidence-based medicine [59].

When CDSS are applied in the diagnosis domain, they are called diagnostic decision sup-

port systems (DDSS). They were developed to mimic a natural process of differential diag-

nosis performed by clinicians [60]. This procedure involves analyzing the patient’s history

and the results of other tests (laboratory, physical, imaging) to make an accurate diagnosis.

Because of the many factors that go into making a decision, this is a time-consuming process

with a risk of error, especially if it involves a rare condition with symptoms similar to other

conditions. DDSSs are developed as a diagnostic aid because computer systems can accu-

rately infer from large data sets, revealing correlations that a human expert might overlook.

They are not designed to replace phycisians, but merely provide with a list of possible diag-

noses given the patient information. Despite hopes of improving the diagnostic process, the

reception of the methods was not positive, given the poor accuracy and system integration

[61]. More specialized DDSSs have achieved greater success in application. For instance,

Kunhimangalam et al. proposed a system for diagnosing peripheral neuropathy [62]. Using

fuzzy logic, they integrate information about symptoms and results of the diagnostic tests.

Comparing the results of the model with the opinion of the experts, they achieved satisfac-

tory accuracy.

The CDSSs are also used during surgical procedures. A system described in [63, 64] helps

to localize a subthalamic nucleus (STN) in deep brain stimulation surgeries aimed at the

treatment of Parkinson’s disease. The location of the nucleus is established based on the

microelectrode recordings placed within the brain during the surgery. When close to the

STN, surgeon moves the electrodes 1 mm at a time and take 10 s of recording to analyze, till

reaching the STN structure. Described algorithm cleans and analysis the data by removing

high frequencies, sporious spikes and other artifacts using wavelet transformations [65] and

power spectral analysis. Recordings analyzed in this way can be passed to an a machine
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learning algorithm, which assesses whether the footage is from an STN or another structure.

Such analysis are necessary as this structure cannot be visualized on CT or MRI. The system

relieves the surgeon of the labor-intensive interpretation of the recordings, improving the

outcomes and decreasing the time of the surgery significantly.

Such systems are also used in aortic valve replacement surgeries [66]. These surgeries re-

main complex and technically challenging given the limited workspace and restrictive sur-

gical field. The system indicates an entry site optimal for the patient’s morphology based

on anatomical measurements from the preoperative CT images and the surgical guidelines.

An initial step is skin and bone structure segmentation using 3D region growing method

[67]. This process allows to detect sternum using image processing methods. Once the right

border of sternum is identified, an intercostal spaces (ICS) can be detected from the ribs

countur. Using clinical guidelines, this information can be easily used to propose surgical

technique best for the patient morphology. With interactive three-dimensional visualization

of all relevant information, it makes planning the surgery much easier.

Many DDSS systems are designed for radiology applications. These systems are described

in more detail in the following section.

3.2.3 Radiology

Radiology is a branch of medicine that focuses on the analysis of images obtained by vari-

ous techniques, such as X-ray, CT, MRI, and ultrasound. The successes achieved by neural

networks, particularly convolutional networks, in image classification have led researchers

to develop methods to support the diagnostic process of radiologists [68].

Ismael and Sengur developed and described in [69] a variety of models to classify chest

X-ray images into two classes: healthy and COVID-19 disease. They used well-known and

tested convolutional neural network (CNN) architectures (ResNet18, ResNet50, ResNet101,

VGG16 and VGG19) described in [70, 71], to extract features from X-ray images, which were

then classified by the support vector machine (SVM). CNN models were fine-tuned in a sep-

arate experiment to classify the original images. In both approaches, authors achieved ac-

curacy above 90%. Chest X-rays were also used by Sogancioglu et al. [72] to detect car-

diomegaly by anatomical segmentation and image-level classification. Models proposed by

the authors achieve great performance with a segmentation approach reaching an AUC of

0.977 and a classification approach with an AUC of 0.941.
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The use of deep learning in radiology is not limited to X-ray image analysis. ANNs were

also applied to a challenging task of brain tumor classification and grading [73] based on

MRI images. CNN architecture used by the authors can detect three types of tumors: menin-

gioma, glioma and pituitary tumor, as well as differentiate between three grades: II, III, and

IV. The accuracy achieved in both tasks is above 96%, making it a feasible diagnostic aid.

Many methods were developed for the diagnosis of primary liver cancers and their metas-

tases [74]. A typical screening method for liver abnormalities is a periodical abdomen ultra-

sound. Guo et al. proposed and described in [75] a two-stage multi-view learning framework

for diagnosing liver tumors using contrast ultrasound images. The first stage corresponds to

the deep canonical correlation analysis on ultrasound images resulting in the multi-view

features. These features are fed in the second stage to a multiple kernel learning classifier

providing the final diagnosis.

Contrast-enhanced ultrasound cine clips were used by Ta et al. in [76] for classifying

benign and malignant liver tumors. They achieved performance with AUCs of 0.829 and

0.883 using artificial neural networks and support vector machines (SVM).

Various approaches are described in [77], which provide invaluable assistance in diag-

nosing neurodegenerative diseases. An example can be given by Payan and Montana in

[78]. They employed sparse autoencoders and 3D convolutional neural networks to detect

Alzheimer’s disease from MRI scans. Another example is using rather simple Alexnet archi-

tecture [33] to diagnose Parkinson’s disease based on T2 MRI. A system proposed by Sivaran-

jini and Sujatha, and described in [79], achieves accuracy of 88.9%.
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4 Path search algorithms

Pathfinding is the process of calculating the shortest route between two given points us-

ing a computer algorithm. It is a practical approach to solving maze-like problems and is

highly influenced by Dijkstra’s algorithm [80] for finding the shortest path on a weighted

graph. Pathfinding is related to the shortest path problem from graph theory, which focuses

on identifying the most suitable path between two points in a large network based on spe-

cific criteria, such as length, speed, or cost.

The pathfinding method involves searching a graph by starting at a given vertex and ex-

ploring adjacent nodes until reaching the target node. The objective is usually to find the

most cost-effective route. Two widely used algorithms allowing to achieve this task are Dijk-

stra’s algorithm and its variant - an A* algorithm, described in this chapter.

4.1 Dijkstra algorithm

Dijkstra’s algorithm was designed and published in [80]. It exists in many variants, while the

original version was developed for finding the shortest path between two nodes in a weighted

graph. An example of such an application is to find the shortest route between two cities on

a network of roads. In such a case, the nodes represent the cities connected with weighted

edges. The weights of the edges reflect the driving distance between the two given cities.

The algorithm computes the shortest path between the source node and every other node in

a graph, stopping when the shortest path between the source and target is found.

The first step of the algorithm is to mark all the nodes as unvisited and store them in

a set. Each node is assigned a distance value, 0 for the source and infinity for all other nodes.

The procedure computes the tentative distance value for all neighbouring nodes through

the currently investigated one. This new distance is compared to the presently stored value,

and the smaller is assigned. After all the neighbours are considered, the current node is

marked as visited and removed from the unvisited set. The process repeats by setting as

the current node, a node from the unvisited set, having the smallest distance value. The

algorithm finishes when the destination node is marked as visited, or the target node has the

smallest distance value among the unvisited ones.
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4.2 A* algorithm

A* algorithm was designed and published in [81]. It is a variant of Dijkstra’s algorithm, which

assigns a weight to each unvisited node equal to the weight of that node increased by the

approximate distance between the inspected node and a target node. This distance is ap-

proximated by the heuristic function h(vn , vt ), which distinguishes this approach from the

original idea. Hence, for a given node vn an A* algorithm minimizes:

f (vn) = g (vn)+h(vn , vt ), (18)

where g (vn) is the cost of the path so far, and h(vn , vt ) is the heuristic function, estimating

a cost of a path from the current point vn to the target vt .

A* is equivalent to Dijkstra when the heuristic evaluates to 0. As the estimates increase

and come close to the true distance, the algorithm runs faster, still finding the optimal paths.

This expedited computation time is caused by inspecting a smaller number of nodes. The

smallest number is inspected when the value of the heuristic method equals the true dis-

tance.

Due to the use of a heuristic measure computed between the source and target node, the

use of this algorithm is restricted to finding the shortest path between two nodes (a goal-

oriented pathing). Hence, an A* algorithm does not allow to compute the shortest path-tree

between the source and all possible targets, as in the case of Dijkstra.
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5 Related works in tractography

One of the applications of computational methods in medicine is tractography. Its main

purpose is to compute the topology of the neural fibers, based on the DTI sequences of MRI

imaging. In preoperative planning it allows to visualize the organisation of white matter near

the planned surgery site, providing invaluable aid for neurosurgeons (see section 2.3).

5.1 Methods taxonomy

Figure 5.1 depicts the taxonomy of tractography methods. Because of their convergent pur-

pose, these methods are best classified by their approach. Hence, they can be divided into

classical mathematical models and learning models. Mathematical models are the results

of methods predicting the orientation of the neural fibers without support from machine

learning methodology. These methods can be subdivided into deterministic and probabilis-

tic approaches. The deterministic methods focus on elucidating the deterministic connec-

tivity between regions of interest. However, they are prone to errors due to the noisy nature

of MRI. Probabilistic methods take into account the uncertainty of orientation estimates.

When creating a streamline in each propagation step, an orientation of a fiber is drawn ran-

domly from the orientation distribution [82]. Even though they are computationally more

expensive, they are better suited for high uncertainty regions (e.g. crossing fibers) and where

noise is present [83]. Learning models include both classical machine learning approaches

and deep learning methods. With the development of these techniques, they have been suc-

cessfully applied in many areas, such as image recognition and classification [33, 71, 84], the

design of drugs [85], or patient’s scans [68] and genomes [86].

5.2 Mathematical models

Basser, one of the inventors of DTI imaging itself, proposed one of the first approaches to

tracking neural fibers [87]. His method is based on the fact that in each voxel, a trajectory

of the tract is parallel to the eigenvector associated with the largest eigenvalue of the local

diffusion tensor [10]. The question, though, is how to follow the trajectory of the neural path

across multiple voxels. As the author states using the eigenvectors is prone to fail as these

are inherently discrete and noisy and are just estimating the true direction of the water diffu-
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Figure 5.1: Taxonomy of tractography methods

sion [10]. His method calculates a continuous diffusion tensor field. In the next step, based

on that field, an eigenvector-field map is computed, which allows using the linear forced

vector differential equation to compute the trajectory of a tract, as the trajectory vector is

parametrized by arc length [87].

Lazar et al. [88] embarked on using not only the eigenvector of the biggest eigenvalue,

but to utilize the information carried by the whole diffusion tensor. This algorithm, called

TEND, uses the tensor deflection technique. Tracking is done in a stepwise fashion. The tract

direction from the previous step is considered the incoming vector, which is then deflected

towards the major eigenvector direction at a given position. The curvature of deflection is

limited to achieve smoother tracts. The resulting deflected vector depicts the directions of

the neural path in a voxel under consideration. This method introduces stopping criteria

allowing to block tract expansion when fractional anisotropy drops below a certain value or

when the change of the followed direction changes by more than 45◦.

A nerve tract can be conceptualized as a path in the very dense graph representing all

anatomical connections within the brain’s white matter. Therefore, a group of researchers

decided to use path search algorithms, more specifically, some modifications of Djikstra’s

algorithm [80], to track nerve fibers.

Andrew Zalesky, in his work from 2008, describes fiber tracking as a problem in com-

puting shortest paths in a weighted digraph [89]. In such an approach, a single voxel be-

comes a vertex, and nodes are placed between vertices representing neighbouring voxels.

The weights are computed with a Bayesian framework and reflect the alignment with fiber

trajectories in the vicinity. More precisely, it quantifies how likely a given edge is tangential

to a small segment of the genuine fiber. A probability for the whole tract is computed as the
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product of probabilities assigned to the edges. To build such a graph and track fibers this

method requires two points as the input: the seed and the target. According to the authors,

this method produces the same fiber trajectory between two given points regardless of which

one is which.

A similar graph representation of a tracking problem was used by Sotiropoulos et al. [82].

This method is designed for probabilistic tracking through crossing fibers, based on orien-

tation distribution function (ODFs) derived from Q-ball imaging [90]. The main aim of this

work is to deal better with crossing regions. In such areas, voxels contain multiple fiber orien-

tations. This poses a challenge to propagate the current trajectory in the direction following

the underlying anatomical truth. The algorithm proposed by the authors considers multiple

fiber populations occurring in a single voxel (if partial volume exists). Hence the image is

treated as a multigraph, allowing to distribute the connectivities in a weighted manner with

the most probable tract obtaining the highest weight. Similarly to other methods, vertices

represent voxels from the diffusion data, connected with neighbours by edges. Partial paths

are constructed in the close vicinity of a voxel under consideration (cube sizes of 3×3×3 or

5×5×5) and scored based on the weights of edges. A trajectory with the highest score is then

selected as the elongation of the current one.

Work by Aronis et al. [91] proposes a novel cost definition for the graph edges, allowing

to take into account tract curvature and its alignment with the diffusion vector field. The

only modification to the Dijkstra algorithm, except for the cost function defining the edge

weights, is keeping the set of vertices with a determined distance from the source and the

distance map holding the current estimation of the distance of each voxel from the seed.

Calculating the cost function considers three terms calculated from the vector field. Min-

imizing these terms favours the smoothness of the calculated tracts and ensures that the

transition between the current node and the candidate nodes is as parallel as possible with

the diffusion eigenvectors. This method was tested on 2D and 3D synthetic data and the

clinical MRI-DTI study to show it can calculate known brain tracts.

MRtrix3 [92] is a freely available software package for medical image processing and visu-

alization. Among many useful tools, it implements global tractography using a multi-tissue

spherical convolution model, introduced by Christiaens et al. [93]. It is an approach which

extends the method proposed by Reisert et al. [94] to be used with multi-shell response func-

tions. It also adopts a multi-tissue model proposed by Jeurissen et al. [95] to differentiate be-
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tween white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). Although inter-

esting, global tractography are not of interest in neurosurgery applications. MRtrix package

implements, however, constrained spherical deconvolution [96], allowing to estimate fiber

Orientation Distribution Function (fODF). fODF can then be used by tracking algorithms to

compute tractograms. MRtrix implements both deterministic and probabilistic approaches

[97]. The deterministic algorithm computes a single fiber along its local orientation. The

Newton-Raphson gradient ascent algorithm is used to identify the nearest fODF peak it-

eratively. In the probabilistic approach, a future streamline direction is sampled from the

fODF. Sampled directions are constrained to a certain angle from the current location. These

methods can produce smooth results and good resolution due to using different data sources

(such as HARDI imaging) and step sizes smaller than the voxel size. Tracking is stopped when

no satisfying fODF peak can be found or the area is outside the predefined ROI.

The last mathematical model described here was proposed by Descoteaux et al. [98].

In this method, fODF is obtained by applying sharpening deconvolution transform (SDT)

of the diffusion ODF from Q-ball imaging [90]. The transform shows new insights into the

relation between the HARDI signal, diffusion ODF and the fODF. The sparsity of the fODF

and the difference between Q-ball and real diffusion direction compel the use of sharpening

operation. Similarly to MRtrix, this method offers deterministic and probabilistic variants.

The deterministic approach extends classical streamline generation by considering multiple

fODF maxima at each step and the tract is elongated into one from 1281 possible directions.

The probabilistic approach extends a random walk method [99, 100], and it uses the informa-

tion contained in multidirectional fODF. For calculating the topology of the tract, particles

are used that moves freely from the seed point, based on the local fODF information. Each

voxel is scored based on the number of particles that reached it. Elongation direction is cho-

sen from 120 discrete directions computed from the voxel scores with a step size of half the

voxel size.

5.3 Machine learning models

The first machine learning (ML) model for tractography was proposed by Neher et al. [101,

102]. Each streamline is elongated stepwise, similar to the traditional approaches. However,

local tissue propensities are not derived from mathematical models. Instead, a random for-

est classifier lays the directional proposals based on the raw diffusion data. An algorithm
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considers information from the closest neighbourhood when extending from a given point.

The model decides upon a new orientation and outputs probabilities for each direction to-

gether with non-fiber probability. Tracking stops when non-fiber probability exceeds the cu-

mulative sum of other probabilities. This study revealed that machine learning helps avoid

errors caused by MRI noise and local signal ambiguities.

The random forest classifier described above is the only tractography method using the

classical machine learning approach. All the other methods implement neural networks.

Poulin et al. describe two approaches to tractography, using feedforward (FFNN) and

recurrent neural network (RNN) [103]. While FFNN returns a three-dimensional vector de-

scribing fiber orientation for each point within the diffusion data, the RNN takes advantage

of the previously seen voxels by remembering features relevant to the entire streamline ori-

entation. The authors raise the issue of learning a proper stopping criterion. It requires

careful engineering and balancing of the loss function. Nonetheless, the presented method

achieved high spatial coverage on a given test set, controlling the number of false positives

at the same time. Another study carried out by the group postulated using RNN in a bundle-

wise manner. It results in improved tracking efficiency, a higher number of valid streamlines,

and better volume coverage in comparison to other methods [104].

RNNs were also used by Benou et al. in a method called DeepTract [105]. Like other

ML methods, it is suitable to work on various types of raw diffusion data. It estimates the

orientation of local fibers as a discrete probability density function, which allows to sample

directions at a given point. Choosing the right direction is treated as a classification task,

where the model outputs the probability of each orientation.

The methods available to solve the tractography problem are not directly applicable to

preoperative planning. Given the noise and artefacts that occur, they usually require a te-

dious data-cleaning process. Without this, there is a risk of obtaining suboptimal or even

erroneous results. Expertise is needed from the user not only in anatomy but also in the DTI

imaging, as well as methods used to infer directionality information on the level of voxels.

Successful fiber tracking is often possible only when using several available techniques, as

their results may differ. Moreover, individual methods are usually prepared for a specific ap-

plication, such as global tracking, local tracking or connectomics. In preoperative planning,

the ability to study fibers in all these aspects is a significant advantage. Thus, there is a need

for a method that can work on data that has undergone only basic processing and that does
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not require substantial domain knowledge. An indispensable advantage would be the abil-

ity to determine various structural features of the white matter, such as crossing fibers, or

computing only the fibers connecting two specific regions. Such a method could be success-

fully used by neurosurgeons providing additional knowledge about the white matter near

the surgical field.
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Figure 6.1: HyTract method for tractography

6 Hybrid method for tractography

6.1 Overview

A hybrid method for tracking neural fibers, HyTract (HT), was designed and developed. It

combines an artificial neural network (ANN) and a path search algorithm to calculate the

topology of the nerve fibers. Preoperative planning does not require a tractogram of the

whole brain, hence analyzing the whole scan is unnecessary. Therefore, the artificial neural

network processes small samples picked from the entire study. As a result, the amount of

analyzed data is small, allowing quick calculations. The neural network model accepts as

the input a sample of a predefined size, e.g. 5×5×5 voxels. It outputs a tensor of likelihoods

of the same shape as the input, containing scalar values used by a search path algorithm to

calculate the topology of the nerve tract.

Details of the methods and their implementation are discussed in the following sections.
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6.2 Automated tracking pipeline

The HyTract method assumes that the neural network processes diffusion data in small por-

tions - cubes with a size of e.g. (5×5×5 voxels. Hence, the automated pipeline guides tracking

through the white matter.

Algorithm 1 Automated tracking
Require: S, s ∈ S, set of tracking seed points
Require: M(D), neural network model operating on a three-dimensional diffusion tensor D
Require: A(T ), Path search algorithm operating on a three-dimensional tensor T
Require: Υ(x), Function sampling diffusion data, where x is the central point
Require: χ(x), Stopping criterion function

while S ̸=∅ do
Tr act s = {si , }
while χ(si ) ̸= 1 do

D ←Υ(si )
T ← M(D)
P ← A(T )
if |P | > 1 then

Append existing tract to each, tracts will have multiple paths
else if |P | = 1 then

Extend current tract
end if

end while
end while

Tracking starts with a set of tracking seed points. These are defined by a user performing

tracking and can be picked depending on the aim of the tracking. For instance, if someone

wants to compute tracts originating in a given functional cortex area, such tracking seeds

can be picked from the interface between the gray and white matter in that area. When

attempting neurosurgery, seed points can represent the area adjacent to the planned site of

the intervention.

Each seed point is treated as the beginning of the tract. The first step is to draw the de-

sired portion of the diffusion data surrounding the seed point. In all of the descriptions,

a cube of the size of 5×5×5 voxels is used (5 voxels long in each dimension), with the seed

point as the central voxel. This small sample of the diffusion data is processed by the ANN,

which outputs a three-dimensional tensor of probabilities for each voxel. These values de-

scribe how likely the voxels are to contain the same neural fiber as the central one.

In the next step, the path search algorithm is employed to calculate the paths within the

cube. The process of tracking within the cube is described in the section 6.4. This algorithm
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Figure 6.2: Euclidean distance from the seed point as the stopping criterion

returns either a single path or a set of paths if fiber split is detected. If the result is a sin-

gle path, a current path is elongated. If more than one path is found, the existing path is

multiplied, and each copy is extended with the paths found. Consequently, the approach

described here is probabilistic, computing all possible paths originating at a given point.

Tracts for a given tracking seed are continuously extended until no other paths are found

in a drawn cube (see target selection in section 6.4) or the stopping criterion is met. Consid-

ering this system is designed for use in planning neurosurgery, an adequate stopping crite-

rion is a Euclidean distance measured from the beginning of the tract. Figure 6.2 visualizes

a seed point (yellow square) and their respective tracking limits (dashed line) at a predefined

distance from the origin dst .

6.3 Neural network for diffusion data processing

A neural network processes the diffusion data. The output of this network can be used in the

following steps to calculate the streamlines. It is common to design a neural network in one

of two ways, either by growing or pruning. Due to the growing method’s greater popularity,

it has also been adopted in this work.

In each case, we consider input containing two vectors. The first item is the gradient

table, containing information about the magnetic field gradient used in the acquisition of
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each sample during the MRI experiment. The size of the gradient table is N ×3, where N is

the number of samples from the diffusion data. Gradient table is the product of row-wise

multiplication between the gradient vector matrix and gradient values. The second element

of the input data is a series of three-dimensional matrices with diffusion intensities. The

number of matrices depends on the specified sample count used or acquired during MRI

experiment.

Neural network models designed in this work allow configurable cube size (a portion of

diffusion intensity 3D matrix) and the number of samples. For a cube size of M, the input

diffusion intensities matrix is of size M ×M ×M ×N . Cubes of small size (e.g. 5×5×5 voxels)

can be iteratively drawn from the data, and neural network results are reassembled after-

wards. This procedure allows limiting the area for which computation shall be made. The

location from which the cube is drawn is not random. The central voxel of the cube always

corresponds to a seed point used to start tracking or to a voxel containing part of an already

computed streamline (see section 6.2).

The number of samples used can be limited as well. Each sample in the experiment por-

trays a water diffusion in a specific direction (described by the gradient table) for all voxels.

Intuitively, it is possible to compute diffusion intensity for each voxel in all possible direc-

tions in the three-dimensional space, using just several selected samples. Each sample mea-

sures the strength of the water diffusion in a particular direction described by the gradient

vector.

Limiting the size of the part of the diffusion matrix considered (drawing cubes) and the

number of samples analyzed by a neural network in a single run allows to decrease the num-

ber of neurons in the model without deteriorating its performance. The model’s output is

a matrix of size M ×M ×M ×1. Each value in the matrix describes how likely does the corre-

sponding voxel contain a continuation of the streamline from the central voxel.

Each architecture presented in this work is initially trained with a cube size of M = 5 and

a sample size of N = 14, i.e. 14 measurements. This means that the size of a gradient table

is 14×3 or 42×1 when flattened. A fragment of diffusion data (a cube) providing input to

the model will have the size of 5× 5× 5× 14, or 1750× 1 when flattened. Architectures are

depicted for M = 5 and N = 14.
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6.3.1 Minimal architecture

The simplest deep-learning neural network contains at least three layers: an input layer,

a hidden layer, and an output layer. Such architecture has been used as the first attempt in

this work. Figure 6.3 depicts this model in more detail, with the input-output size of each

layer. B 3
2 denotes the second value of the gradient vector for 3rd sample, V3 a gradient value

for the 3rd sample, G elements of a gradient table vector, I elements of the diffusion input

vector, and F elements of the input feature vector. The gradient table and diffusion data sam-

ple are flattened to a vector of 42 and 1750 scalar values. Both input vectors are concatenated

to produce a feature vector of 1792 values.

Figure 6.3: Minimal model

The input layer is the fully-connected (FC) layer accepting 1792 features and is activated

by the ReLU function. The output of this layer is a 2048×1 vector, matching the input of the

hidden layer, which also has ReLU activation. The output of the hidden layer is 1024 and is

passed to the model output layer, followed by a sigmoid function. The model’s output is the

three-dimensional matrix of probabilities for each voxel, as described in the introduction to

this section.
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Figure 6.4: Two-fold-input model

6.3.2 Two fold input model

The Two-fold-input model is an extension of the minimal network model. Architecture of

this model is depicted in figure 6.4. The input layer is replaced with an input stage. It consists

of two FC layers, processing the input data in parallel. The gradient table part results in

a vector of size 1000×1. The diffusion data part results in the vector of size 5000×1. Both

vectors are concatenated to create a single vector of size 6000×1, passed to the hidden layer

with ReLU activation. The output layer accepts a vector of size 1000× 1. It is followed by

a sigmoid function to compute a three-dimensional matrix of probabilities for each voxel as

in the minimal model.

Replacing a single input layer with two independent layers allows the network to have

two sets of unconnected weights to process the input data. This stage’s output size was in-

creased compared to the minimal model. However, due to efficient parallelisation, it does

not influence efficiency. This procedure allows using more neurons in the hidden layer. As

a result, this layer intuitively has a higher capacity to learn the relationship between two

types of data.
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Figure 6.5: Two-fold-input model with attention weights

6.3.3 Two fold input model with input attention weights

The two-fold-input model with attention weights extends the two-fold-input model described

in the previous section. When concatenating the two vectors from the input stage, each is

multiplied by a scalar value, γ and δ respectively (Fig. 6.5). Both are model parameters, and

their values change during the learning process. These values will reflect the importance of

individual data in the learning process, increasing the model’s performance. Due to their

ability to weaken or strengthen the signal, they were named input attention weights.

6.3.4 Two-fold input model with convolution

Even though fully-connected layers have the potential to simulate all the other, more spe-

cialized layers, the other architectures were tested as well. The two-fold input model with

convolution, presented in figure 6.6, is very similar to other architectures presented above.

The main difference is in the diffusion data input layer, which was replaced with a one-

dimensional convolution layer. It accepts 125 channels on input and outputs 250 channels.

The kernel size for convolution is set to 5 and stride to 2. The flattened output of this layer

is a vector of size 1250×1. The gradient processing layers’ output has decreased and is left

the same as its input. After merging the two vectors, the input to the hidden layer has a size

of 1292×1. The output of the hidden layer, as well as the output layer of the network itself,
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Figure 6.6: Two-fold-input model with convolution layer

Architecture Number of layers Number of parameters
Minimal model 3 5 898 365

Two-fold input model 4 14 938 125
Two-fold input model with weights 4 14 938 127

Two-fold input model with convolution 4 1 576 431

Table 6.1: Number of trainable parameters in architectures

remains unchanged in comparison to the architectures described previously.

6.4 Modified A* algorithm

The output of an artificial neural network is a three-dimensional matrix of specific dimen-

sions (e.g., 5 x 5 x 5 voxels). Each element of this matrix corresponds to a voxel from the input

sample, and each value is the probability with which a given voxel has the same nerve fiber

as the central voxel. This data is used to build a graph in which the vertices correspond to in-

dividual voxels and, consequently, to particular values of the resulting network matrix. Edges

connect the vertices to map the voxels’ immediate vicinity. Figure 6.7 shows the graph built

from the network’s output. For simplicity, the concept is shown in two dimensions. Each

neighbour of a given node has a weight assigned to it. This weight equals a probability value

given by the neural network, describing how likely it is that a given voxel (node) contains the

same neural path as the central voxel at position [2,2,2]. By design, a central voxel is treated
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Figure 6.7: Constructing a graph from neural network output. a) Example of the neural net-
work output; b) A graph representation of the neural network output

as containing a neural path. Hence other voxels in a cube are considered in this respect.

The HyTract method aims to build a tractogram - the topology of the nerve fibers. To

achieve this a path search algorithm is required to find the most probable paths in the graph,

representing neural fibers. Some of the classical methods described in section 5.2 use a mod-

ified Dijkstra algorithm to reconstruct the trajectory of a neural path. In this work Dijkstra

algorithm was also tested (data not shown). However, in this case nodes represent voxels,

which have well-defined position in the three-dimensional space. In such a case an Euclid-

ian distance can be used as a good approximation of the target distance between two nodes,

allowing to take the advantage of an A* variant of Dijkstra.

In HyTract implementation of the path search, an A* algorithm starts at a given starting

node (seed point) and aims to find a path to the given goal node having the smallest cost.

This objective is achieved by keeping a tree of paths that originate at the seed point and are

extended one node at a time until the stopping criterion is met. At each step, an algorithm

must estimate which path to extend. It is done based on the cost of the path so far and an

estimate of the cost required to extend the path to the target node. It can be achieved by

minimizing the following

f (vn) = g (vn)+h(vn , vt ), (19)

where vn is the current node, vt is the target node, g (vn) is the cost of the path so far, and

h(vn , vt ) is the heuristic function, estimating a cost of a path from the current point to the

target. To use neural network output probabilities for minimizing f (vn), the cost for a given
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Figure 6.8: Source and target points for a path search in a grid with possible paths found by
an algorithm

nodevn have to be computed as a probability subtracted from 1:

ϱvn = 1− ŷn , ŷn ∈ [0,1], (20)

where ŷn is the neural network output for a node n. The cost for a path so far becomes

a simple sum of all the nodes in the path:

g (n) =
ζ∑

n=1
ϱvn , ζ ∈N, (21)

where ζ is the total length of the path so far (streamline). The heuristic function used is a

Euclidean distance from the current node to the target

h(vn , vt ) =
√

(vn1 − vt1)2 + (vn2 − vt2)2 + (vn3 − vt3)2 (22)

where vn = (vn1, vn2, vn3) is the current node, and vt = (vt1, vt2, vt3) is the target node.

A path search is performed in small samples, as described in the HyTract definition. For

described grid size of (5×5) the central voxel [2,2] is the starting point (marked green, Fig.

6.8, a). The targets, [2,4] and [3,0] are nodes on the border of the cube with probability value

equal to or greater than the predefined threshold, e.g. Ψ= 0.5 (marked red, Fig. 6.8, a). This

threshold has to be picked based on the mean prediction value for a positive class, calculated

from predictions during the training. It indicates the value Ψ above which predictions are

correctly classified as containing neural fiber.
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Two paths can be computed for an example grid shown in figure 6.8 a. One of them,

marked blue, contains voxels ([2,2], [1,3], [2,4]). The second, marked purple, contains voxels

([2,2], [3,1], [3,0]) (Fig. 6.8, b). Depending on the paths found in other cubes, a path marked

with blue can continue the purple one if purple has already been marked. Such a situation

would occur if a purple path in the previous steps had been selected as the connection be-

tween tracking seed and current [2,2] central voxel. If another path leads from the tracking

seed to the central voxel, the situation depicted in figure 6.8 can be interpreted as a splitting

fiber.

6.4.1 Splitting fibers

Splitting fibers are typical in brain organization, where a single fiber bundle splits into two,

connecting the source area with two or more target areas. It is easy to detect such cases by

using a path search with A* on a set of cubes. If we consider the situation depicted in figure

6.9 in the first two grids (a and b), a tract from point A (seed point) to point B (border target

on the second grid, b) has been computed. Drawing the next grid (c), we see three paths

originating from the central voxel (point B, the target in the previous grid). Gray path has

already been marked in the previous cube. The green path is identified as connecting central

new voxel B with border target C. The blue path connects central voxel B with another border

target D. In that case, none of the paths (B → C and B → D) was seen previously, indicating

splitting fibers. In such a case, there is no certainty about extending the current streamline

into a single direction. Both paths, A → C and A → D , are probable and are be included in

the results.

6.4.2 Tract smoothing

Tracks computed on the resolution of voxels can have sharp turns. This situation can be

observed in an example on the upper left pane in figure 6.10. Neural fibers in the body do

not arrange themselves in such a way. A simple moving average method (SMA) described in

[106], can smooth out the fibre’s topology.

For each node v , average coordinates in the three-dimensional space can be calculated

for a given window size z, where the window size corresponds to the currently analyzed por-
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Figure 6.9: Detecting splitting fibers

tion of the fiber with length ζ:

SM Az = vn−z+1 + vn−z+2 + . . .+ vn+z

z

= 1

z

n∑
i=n−z+1

vi

(23)

SMA is commonly used in financial applications [107]. In this case, for each node, a nodes

vn−k+1+vn−k+2+ . . .+vn+k are taken into account to reflect the overall fiber topology better.

Figure 6.10 depicts using SMA with window sizes z set to 3, 5, and 7 on a crafted example.

It is visible that the larger the window size, the more smooth the fiber becomes. However,

the anatomic relevance of such smoothing is in question, like in the U-turn marked with

arrows on the lower panes. In this case, the smoothed topology deviates significantly from

that determined by the algorithm (red and blue lines). For this reason, smaller window sizes

should be used to more faithfully reflect the results of the path search algorithm (green line,

upper right pane). Even using such a small window size, SMA can fix artefacts created by

favouring diagonal transitions between voxels (marked with arrows, upper right pane in Fig.

6.10).
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Figure 6.10: Smoothing calculated tracts with SMA; k=3, k=5, k=7.
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Figure 7.1: Dataset preparation outline

7 Diffusion data analysis and processing

Artificial neural network is one of the key elements of the HyTract method. Training this net-

work requires the preparation of appropriate labels. For this purpose, data from the diffusion

tensor imaging (DTI) method and anatomical imaging (T1, see Fig. 2.9) were used. After

proper preparation, they were used to create tractograms using the three methods avail-

able in the Dipy library [108]. The fibers confirmed by at least two methods were used to

create the labels (tractograms), thus substantially decreasing the number of false positives.

Available tools, libraries and platforms were reviewed to solve the problems discussed in this

chapter. Based on this selection, an efficient computational pipeline was proposed to obtain

labels for artificial neural network training.

Creating labels can be divided into four stages presented in Fig. 7.1: coregistration, cal-

culating brain masks, tractography, and label creation. These steps will be discussed in more

detail in the following subsections.

7.1 Scan coregistration

The initial step in the label preparation pipeline is the coregistration of different MRI images.

Anatomical scans are usually registered in a different resolution than diffusion data. In the

case of the HCP subjects, T1 and T2 scans are done with a voxel size of 1mm, while the

diffusion is with a voxel size of 1.5 mm. Thus the anatomical scan has to be coregistered

to the diffusion scan space to relate spatial information properly.
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The first step is to extract the mean B0 image from the set of diffusion measurements,

which can be achieved by dwiextract tool from MRtrix3 package [92]. This image is a rigid

reference to which the T1 image will be aligned. Registering T1 to B0 is done using FMRIB’s

Linear Image Registration Tool (FLIRT) [109, 110, 111] from FSL software package [112, 113,

114] using six degrees of freedom for transformation. The resulting files are the T1 image in

the same space as the diffusion image and a transformation matrix. The resulting T1 image

is then used to calculate all the necessary masks used in the further steps.

7.2 Brain masks computation

To prepare tractograms based on which the labels were created, several brain masks were

required. These include a white matter mask, a white-matter-gray-matter interface mask,

and a functional area mask.

White matter mask can be computed from T1 scan data. Its main role is to target tractog-

raphy algorithms to generate streamlines in regions containing white matter tissue, where

the neural fibers are expected. Firstly a five-tissue-type (5TT) segmented tissue image has

to be computed from the T1 image. The 5ttgen tool [115] from MRtrix3 package [92] has

been employed. At this stage, to limit the amount of data processed, a non-brain tissue is

removed from the image by Brain Extraction Tool (BET) [116] from FSL. White matter mask

(WM mask) can be then easily extracted from 5TT image cropped to the brain area with mr-

convert tool from MRtrix3 package (Fig. 7.2).

Due to the underlying anatomy of the neural connections, neural tracking usually starts

on the interface between gray and white matter. Mask identifying this interface, gray matter-

white matter interface mask (GMWMI mask), can be obtained by using a dedicated tool

5tt2gmwmi [115] from MRtrix3 package (Fig. 7.2).

Tractography of the whole brain is an interesting field of study. However, in neurosurgical

applications, it is more important to track the fibers coming out of a specific eloquent region

of the cerebral cortex. In an ideal scenario, this region should be determined by fMRI. For

the presented studies, Juelich histological atlas was used to obtain the location for Broca’s

region (see Fig. 2.3) [117] and area V1 from the visual cortex [118]. Functional regions in the

atlas have been annotated on MNI152 1mm brain, a template T1 image with 1mm voxel res-

olution [119, 120]. This image was created by linear co-registration of 152 normal T1 images

to the common space. The main purpose of this venture carried out by the International
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Figure 7.2: Masks extraction
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Figure 7.3: Calculating functional mask

Consortium of Brain Mapping (ICBM) was to define the standard anatomy. Herewith, it is

possible to create masks for functional regions in MNI152 space, which can then be trans-

formed into the subject space. The values represent the likelihood of belonging to the func-

tional area of interest. FLIRT and FNIRT [121] tools were used to generate a transformation

matrix from the subject space to the MNI152 space. This transformation matrix is used to

transform functional area masks to the subject space as presented in Fig. 7.3. To use masks

efficiently, it is a good practice to binarize them and use only voxels above a given threshold

Ψ ∈ [0,1]. For this study, a low threshold ofΨ= 0.1 was used not to narrow the starting region

too much.

The last computed mask is the gray matter-white matter interface in the functional re-

gion, obtained by combining the GMWMI mask with a functional mask.

7.3 Computing tractograms for training labels

To calculate labels to train the models, tractograms were built for nerve fibers originating

in the eloquent regions responsible for speech generation. Voxels on the interface between
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Figure 7.4: Preparing tracking seeds

white and grey matter within the Broca region in the left and right hemispheres (BA44 and

BA45) were used as the seed points. For this, a GMWMI mask was combined with an ap-

propriate functional mask, computed as described in section 7.2. The process is depicted in

Fig. 7.4.

In addition to the seed voxels, local tracking requires a method estimating the direction

of water diffusion from MRI data and a stopping criterion defining where to stop tracking.

Given the high incidence of false positives in tractography results, three algorithms were

used: EuDX with Constant Solid Angle (CSA) model [122], Deterministic Maximum Direc-

tion Getter (DMDG) [108], and Closest Peak Direction Getter (CPDG) [108]. These methods

compute streamlines, designated as a set of adjoining points in a three-dimensional space.

Streamlines generated by these methods are combined into a “meta-tractogram” used to

compute the labels. Label creation is described in the following section 7.4.

The Constant Solid Angle ODF model fits diffusion data to estimate the Orientation Dis-

tribution Function (ODF) at each voxel [123]. The ODF characterizes water diffusion as

a function of direction. Peaks of an ODF model can be used to calculate fiber orientations in

all voxels of white matter using the EuDX algorithm [122]. In this work, the implementation

provided in the Dipy library [108] was used. The CSA model makes use of the spherical har-

monic (SH) basis. SH order was set to 6. Peaks were computed directly from the CSA ODF

model, with the default sphere providing discrete directions for evaluation. The relative peak

threshold was set to 0.8, and the minimum separation angle to 45◦. This method also uses

a white matter mask to restrict the area where tracking occurs. The stopping criterion was

used to hamper tracking to the areas where the ODF shows significantly restricted diffusion.

It is achieved by thresholding on the generalized fractional anisotropy (GFA), where a value

of 0.1 was used.

Another method used is the Deterministic Maximum Direction Getter (DMDG). It fol-
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lows the trajectory of the most probable pathway within the tracking constraint. This algo-

rithm can be used with the same local model and parameters as the previously described

approach. However, it does not follow the peaks of the local model like EuDX tractography

but rather uses the entire orientation distribution. Diffusion data were fitted with the Con-

strained Spherical Deconvolution (CSD) model to provide the DMDG algorithm with the

spherical harmonic representation of the Fiber Distribution Function (FOD). CSD model

was fitted only in the voxels belonging to the white matter. Tracking was performed with

a maximum separation angle of 30◦ and a default sphere. The stopping criterion was the

same as in the EuDX algorithm, with a threshold of 0.1.

The last method used for computing tractograms in the subjects was the Closest Peak Di-

rection Getter method. It uses the CSD model to fit diffusion data, similar to the case of the

DMDG algorithm. A maximum separation angle of 30◦ was used. The only difference in pa-

rameters is in the sphere used. Here, a small sphere is recommended for the best algorithm

performance instead of the default sphere used in the previous algorithms. A stopping crite-

rion was used with the same parameters as in the case of the EuDX and DMDG approaches.

Figure 7.5 presents a histogram of streamlines computed using the abovementioned meth-

ods. It clearly shows that the EuDX algorithm produces the most streamlines compared to

other methods. Most of them are short, depicting connections within the Broca region itself,

as depicted by a red arrow in figure 7.6. The blue arrow indicates neural fibers forming to-

wards the posterior part of the brain. These could indicate a connection with a Wernicke’s

area located in the superior temporal gyrus of the temporal lobe.

Meta-tractograms were created based on the results obtained by all three methods. Since

the EuDX algorithm produced the largest number of streamlines, it was used as a reference

to which other methods were compared. For each streamline from the reference set, the

fiber closest to it in the other two methods was sought to confirm it. One of the parame-

ters considered was the length of the two streamlines. The shorter one should contain at

least as many points as 80% of the longer one. Those that do not meet this criterion were

skipped automatically. The second criterion is the Mean Euclidian Distance between two

streamlines:

MED = 1

N

N∑
i=1

√
(ai x −bi x)2 + (ai y −bi y )2 + (ai z −bi z)2, (24)

where N is the length of the shorter streamline, a and b, are voxels of two streamlines being

compared with coordinates defined by i x, i y, i z for the x, y, and z planes. For each reference
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Figure 7.5: Streamline lengths histograms

streamline, a streamline of the lowest possible MED was picked from the two other methods.

Meta-tractogram contains those streamlines confirmed by similar streamlines computed by

DMDG or CPDG methods with MED smaller or equal to a given threshold.

Figure 7.7 presents meta-tractograms created based on three thresholds of MED value 1,

2, and 3. The reference tractogram, computed with the EuDX method, is shown for com-

parison. Using a MED value threshold of 1 is too strict, as many essential connections with

distant regions are lacking (marked with yellow arrows). They appear when a MED value

threshold of 2 is used. However, the amount of streamlines not included is still high, leading

to the assumption that this threshold is too strict. A MED value threshold of 3 was chosen to
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Figure 7.6: Visualisation of EuDX tractogram

allow for more possible pathways, simultaneously leaving out the least probable ones.

7.4 Creating labels

The labels are created directly from the meta-tractograms. Figure 7.8 depicts (in 2D for sim-

plicity) how a streamline is marked in the three-dimensional space of the diffusion data.

For each streamline in the meta-tractogram (e.g. A and B in Fig. 7.8) labels are computed

independently. If a streamline occupies a particular voxel, it is marked with 1. All the other

voxels are marked with 0. In this way, a binary mask is obtained, marking the projection of

a streamline in the same space as the diffusion data.
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Figure 7.7: Meta-tractograms with different MED thresholds
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Figure 7.8: Creating labels from meta-tractograms

8 HyTract ANN training and validation

8.1 Experimental setup and datasets

8.1.1 Test scenarios

The research focused on comparing the efficiency and performance of different variants of

artificial neural network models and different shortest-path algorithms. In the case of the

models, tests were performed with the aim of:

1. selecting the best network architecture for a given task

2. selection of an algorithm for the optimal determination of ANN weights in terms of

accuracy and performance

3. comparing the performance of the method for different weight decay parameters and

selecting the best value

4. studying the effect of cube size on the quality of the solution.

To evaluate the results of the tests, the area under the ROC curve (AUC) was used [124, 125].

8.1.2 Dataset

Data from the Human Connectome Project (HCP) database (https://ida.loni.usc.edu/login.jsp)

was used. HCP is the result of efforts of co-investigators from the University of Southern Cal-

ifornia, Martinos Center for Biomedical Imaging at Massachusetts General Hospital (MGH),

Washington University, and the University of Minnesota [126, 127, 128, 129, 130].
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Training and validation subsets were prepared to train the models, based on the data

from five subjects randomly selected from the HCP dataset (case ids: mgh_1007, mgh_1010,

mgh_1016, and mgh_1019). Meta-tractograms prepared for each subject were split into train-

ing and validation in the proportion of 8:2 randomly. Thus streamlines from each subject are

represented in both subsets. The dataset was processed as described in chapter 7.

8.2 Results

8.2.1 Various architectures and learning parameters

When using neural networks, choosing the right network architecture is important. This ex-

periment was designed to elucidate the best-performing architecture from those proposed

in section 6.3. A set of learning parameters were chosen to compare the results reliably. Each

architecture was trained for 100 epochs. The choice of 100 epochs as the training length

was based on previous experiments (data not shown). During these experiments, a deceler-

ation in the decline of the loss value and an increase in prediction accuracy was observed.

Therefore, using such a constraint to compare different proposed architectures and learn-

ing parameters in a reasonable amount of time was deemed reasonable. Experiments were

carried out with three learning rates 1e-3, 1e-4, and 1e-5. This approach prevents model

rejection due to the lack of generalization caused by a high learning rate. The experiments

were run using the Adam optimizer and Binary Cross Entropy loss function [31].

For each training, two plots are drawn (e.g. Fig. 8.1 for Minimal Model), depicting the

loss function minimization (a) and network performance measured by calculating the area

under the ROC curve (b).

Figure 8.1 shows the training process of Minimal Model architecture (presented in Fig.

6.3). The best results in terms of the loss function minimization and network performance

were obtained using a learning rate of 1e-4 with a loss value of 0.1082 and ROC AUC of 0.9531

measured on the validation dataset. Values of the minimal loss and maximal ROC AUC for

all experiments are summarized in table 8.1 at the end of this section.

The training process of the Two-Fold Input Model (presented in Fig. 6.4) is presented in

Figure 8.2. Similarly to the Minimal Model, the best results were obtained when training with

a learning rate of 1e-4. For this experiment, minimal loss on the validation dataset reached

a value of 0.1028 and ROC AUC of 0.9587.

Figure 8.3 depicts training of the Two-Fold Input Model with attention weights (pre-
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Figure 8.1: Minimal model training

Figure 8.2: Two-fold input model training
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Figure 8.3: Two-fold input model with weights training

sented in Fig. 6.5). As in previous experiments, the best results were achieved with a learning

rate of 1e-4. During optimization, the loss function on the validation dataset reached a value

of 0.1038 and a ROC AUC value of 0.9578. After training for 100 epochs, the attention weights

have values γ= 0.0622, associated with the gradient table, and δ= 4.2595 associated with the

diffusion data.

Architecture containing a convolutional layer processing diffusion data input (presented

in Fig. 6.5) did not show an improvement in terms of a lower training loss or increased ROC

AUC value. The training process is depicted in Figure 8.4. As in all other experiments, the

best results were obtained using a learning rate of 1e-4, with training loss achieving a value

of 0.1062 and ROC AUC 0.9552, measured on the validation dataset.

Using a weight decay is a regularization method allowing for better generalization [131].

In this experiment, various values of the weight decay were tested on selected architecture

to investigate whether it would improve model performance further.

Figure 8.5 shows the results of three experiments with weight decay values of 1e-2, 1e-3

and 1e-4. Plots for a learning loss and ROC AUC values clearly indicate that adding weight

decay did not improve the model performance. Learning loss did not decrease for any of the

testing values. Even though ROC AUC increased for each experiment in the training subset,

it remained constant for the validation dataset, indicating a lack of generalization. Hence,

a weight decay shall be set to 0 when training the final model.
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Figure 8.4: Two-fold input model with convolution training

Min loss Max ROC AUC
Architecture Learning rate

Train Val Train Val

Minimal model
1e-3 0.118 0.1248 0.9378 0.928
1e-4 0.0984 0.1082 0.9628 0.9531
1e-5 0.1069 0.1093 0.9534 0.9505

Two-fold input model
1e-3 0.1046 0.1103 0.9563 0.9496
1e-4 0.0925 0.1028 0.9685 0.9587
1e-5 0.1046 0.1068 0.9562 0.9536

Two-fold input model with weights
1e-3 0.1105 0.1159 0.9488 0.942
1e-4 0.0922 0.1038 0.9687 0.9578
1e-5 0.1028 0.1056 0.9581 0.9551

Two-fold input model with convolution
1e-3 0.1013 0.1104 0.960 0.950
1e-4 0.0941 0.1062 0.967 0.9552
1e-5 0.1106 0.112 0.9484 0.9467

Table 8.1: ANN models performance with different architectures (training and validation
phases)
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Figure 8.5: Influence of the weight decay on training

8.2.2 Different optimization algorithms

Despite Adam Optimizer being the most widely used, other algorithms have been proven

to perform better in some cases. Hence, this experiment has tested different optimisation

algorithms on the Two-Fold Input Model with attention weights. Besides Adam, classical

SGD and SAM optimizers were tested. Given a SAM requires a basal optimizer to work on,

two experiments were run, with SAM using SGD and Adam. Figure 8.6 depicts these experi-

ments. For the SGD optimizer and SAM with SGD as the backbone, a learning loss decreased

in the first few epochs to remain constant throughout the rest of the training. ROC AUC for

these two optimizers reached levels below 0.85, which is much less than for other optimiz-

ers tested. The plots are basically the same for the training and validation phases. In the

case of Adam and SAM with Adam backbone, a steady drop in learning loss can be observed

throughout the whole training. Values of ROC AUC are similar and reach levels above 0.95

which are expected for Adam optimizer as seen in the experiments elucidating the best ar-

chitecture. The use of SAM optimizer with Adam backbone does not lay better results. This

indicates that the pure Adam optimizer shall be used, especially given the longer time re-

quired for training with SAM + Adam. This is caused by the need for two backward passes to

minimize the Adam and the SAM optimizer.
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Figure 8.6: Two-fold input model with weights training using various optimization algo-
rithms

8.2.3 Effect of a cube size on results

Previous experiments have examined the effect of specific parameters on the model per-

formance without considering different input sizes. One of the parameters that can affect

the path search stage profoundly is the size of the cube used. With increasing cube size the

amount of the data processed by the network at once is bigger and the granularity of the

search changes. A first step in this experiment was to train neural network for three cube

sizes: 5×5×5 used in the previous experiments, 7×7×7 and 9×9×9. A matrix 3×3×3 was

not considered since, in such an approach, the voxels on the border directly surround a cen-

tral voxel. Hence, there is very little room for the path search algorithm to work. Increasing

the cube size significantly increases the number of model parameters.

Figure 8.7 depicts the training process by visualizing the loss function and ROC AUC met-

ric, as in the previous experiments. All three networks were trained on the same dataset, with

the same parameters of learning rate 1e-4, and weight decay set to 0. As the plots clearly

show the models for cube size 7 and 9 outperforms significantly those for cube size 5. The

model for cube size 7 reaches a ROC AUC of 0.9714 on a validation dataset after 100 train-

ing epochs. The model for cube size 9 reaches an even higher ROC AUC value on the same

dataset - 0.9787. All values are summarized in a table 8.2.

One of the explanations for this might be the number of parameters (Tab. 8.3). The model

for a cube size 7 is twice as big as the one for a cube size 5. The model for cube size 9 is even
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Figure 8.7: Two-fold input model with weights training with various cube sizes

Min loss Max ROC AUC
Cube size

Train Val Train Val
5x5x5 0.0865 0.1012 0.9734 0.961
7x7x7 0.0487 0.0579 0.9824 0.9717
9x9x9 0.0307 0.0369 0.9875 0.9788

Table 8.2: Loss and ROC AUC values for training Two-fold input model with weights with
various cube sizes
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Cube size Number of model parameters

5x5x5 14 938 127
7x7x7 30 416 345
9x9x9 57 822 731

Table 8.3: Effect of cube size on the number of trainable model parameters in Two-fold input
model architecture

bigger, and the number of parameters totals almost 58 mln. In bigger cubes, the view is also

much broader. It allows to check if a branching fiber has a continuation and is a true fiber,

or if the branching is just a data error.

8.3 Training summary and discussion

The network training experiments focused on selecting the appropriate architecture and ex-

amining the impact of the various learning parameters on its effect. Multiple architectures

with a controlled set of parameters showed very similar performance measured on the val-

idation dataset. However, even a small increase of 0.01 in ROC AUC is desirable in medical

applications. During these experiments, the architecture of the two-fold input model with

attention weights was selected for further testing, where it was combined with a path search

algorithm to build the desired tractograms. The attention weights values for a trained model

are δ= 4.2595 (associated with the diffusion data) and γ= 0.0622 (associated with the gradi-

ent table). It indicates that for obtaining a desirable network output scaling on the diffusion

data has to be much higher than for the gradient table. It follows the intuition that the infor-

mation is carried mainly in the intensity of voxels. However, information from the gradient

table is also important as it describes the MRI magnetic field when collecting data, hence the

value of γ ̸= 0.

The optimization of the weights of the network proceeds best with the Adam optimizer,

with a learning rate of 1e-4, leading to the model with a ROC AUC of 0.96, measured on the

validation dataset.

Due to the simple architecture of the network and the relatively small number of param-

eters to be learned, the training process did not require the use of regularization in the form

of the application of the weight-decay parameter, and its use even worsened the results. The

performance of the selected network admittedly was very similar to the network without

attention weights. However, their inclusion in the architecture makes it possible to ensure
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explainability regarding the relevance of individual input data.

Experiments with different cube sizes indicate that the cube sizes of 7 and 9 shall be

used, despite the bigger model sizes. However, such judgment shall not be made solely on

the results of the model training but also on the results of the path search stage of the hybrid

model.
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Figure 9.1: Primary visual cortex with main pathways [132]

9 HyTract testing

9.1 Test scenarios and datasets

9.1.1 Test scenarios

In the experiments described in the previous chapter, the best artificial neural network ar-

chitecture was selected and then combined with the shortest path algorithm. In the case of

the hybrid model, it was examined:

• the effect of cube size and the value of the threshold variable

• the effect of window size on smoothing

9.1.2 Dataset

A validation dataset is disjoint from the training and evaluation. It has been created using

data from a single randomly selected study, not included in the dataset used while train-

ing, with an id of mgh_1027. The dataset was prepared in the same way as for training, as

described in section 8.1.2.
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Figure 9.2: Validation dataset

To check for bias toward detecting fibers originating in the Broca region, tractograms

were computed for the neural pathways originating in the V1 area of the visual cortex in the

occipital lobe (Fig. 9.1). A functional mask of the V1 area was obtained from Juelich histo-

logical atlas. It was binarized at the threshold value of 80 and combined with the GMWMI

mask [118]. The methodology behind creating masks, seeds, and labels is analogous to the

methodology used to create training and evaluation datasets, including algorithms and their

parameters. Figure 9.2 presents the EuDX, DMDG and CPDG tractograms used for reference

validation.
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Figure 9.3: Differences between reference tractograms

For validation, a subset of seeds was used, selected as follows. From each of the full ref-

erence tractograms (computed with EuDX, DMDG, and CPDG), the 100 longest fibers were

selected. For each of them, the position of the initial voxel was determined. All the start-

ing voxels were then collected into a single unique array. These starting voxels were used

as seeds for computing tractograms with different variants of the method presented in this

thesis. For comparison, reference tractograms were limited to the streamlines originating in

the selected seeds.

As the computed tractograms will be compared with these methods independently, it is

important to evaluate how much the reference methods differ from each other. Figure 9.3 is

a heatmap showing pairwise differences between these methods, expressed as a mean MED

computed for the closest streamlines in both.

9.2 Results

9.2.1 Fiber reconstruction with a path search algorithm

Model checkpoints representing a two-fold input with weights architecture were selected

to compare fibre tracking using different cube sizes. These checkpoints were obtained by

training a model to process data cubes of sizes 5×5×5, 7×7×7 and 9×9×9 as indicated in

the Table 8.2.

Tractogram computation was run for each cube size independently on diffusion data
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Streamline
length

Cube size Threshold # streamlines
Mean Max

5x5x5 0.4 4 17 18
0.4 4848 24.80 73
0.5 1190 22.53 46
0.6 403 19.86 33
0.7 67 18.46 26

7x7x7

0.8 18 16.94 21
0.4 12899 32.79 105
0.5 6459 24.94 51
0.6 3373 24.21 92
0.7 889 20.69 48
0.8 449 18.73 40

9x9x9

0.9 296 18.90 36

Table 9.1: Basic statistics of streamlines obtained by computing tractograms with different
window sizes and thresholds

available for subject mgh_1027. As a threshold for the cube border targets, the following

values were used: 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. Other parameters were set constant. Eu-

clidian distance for the stopping criterion was set to 70 voxels, and the smoothing window

to 5, following the intuition explained in section 6.4.2. For clarity, only streamlines longer or

equal to 15 voxels were considered.

Table 9.1 shows the basic statistics for computed tractograms. Surprisingly using a method

variant with a cube size of 5 did not lay any streamlines longer or equal to 15 voxels unless

a low threshold of 0.4 was used. Even with such a low threshold, only four streamlines were

found with mean length of 17. Such a result indicates that this cube size should not be used,

as it does not lay longer fibers, large numbers of which are found in the brain.

Both variants for cube sizes 7 and 9 yield fibers much longer than the assumed thresh-

old of 15 voxels, some exceeding a 100. With increasing threshold values, the number of

streamlines and their length decrease. Such results are expected, given the more restrictive

selection rules for cube border targets. At the same time, increasing the cube size increases

the number of computed streamlines and their length. It is understandable, as with bigger

cubes, the network can interpret the data in a broader context. Moreover, the path between

the cube center and the border is longer, allowing to pass through the voxels of lower values,

that might not have been included otherwise.

Each of the computed tractograms was compared to the reference methods (EuDX, CPDG,

and DMDG using mean euclidian distance (MED), as described in section 7.3. During valida-
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tion, there was no length coverage restriction when searching for the most similar streamline

in the reference tractogram. This restriction was dropped, as the meta-tractogram was not

computed, and the presented method uses a different stopping criterion than the reference

ones.

Tables 9.2, 9.3, 9.4 depict the comparison between reference tractograms (EuDX, CPDG,

and DMDG), and tractograms computed with different cube sizes and thresholds. The trac-

tograms calculated by various variants of the presented method were closest to the EuDX

reference tractogram. The mean MED value is below 10 for five variants, highlighted green

in Table 9.2. These tractograms are presented in Figure 9.4 and 9.5. MED values below 10

suggest that tractograms differ with EuDX on a similar level as the reference methods, as

presented in Figure 9.3. Such inconsistency is not surprising. Using different algorithms and

thresholds in tractography can land different results.

The comparison to CPDG and DMDG methods was not as good, with a MED value be-

tween 10 and 20 voxels. The three best variants, compared to CPDG, are cube size 7 with

thresholds 0.4 and 0.8 and cube size 9 with threshold value 0.5 (marked green in Table 9.3).

The two best variants with a cube size of 7 are consistent with comparison to the EuDX

method. Very similar is the comparison of the different variants with the DMDG method.

The three lowest mean MED values were obtained for variants with window size 7 and the

threshold values of 0.4, 0.6 and 0.8 (marked green in Table 9.4. These results are consistent

with other comparisons made to EuDX and CPDG methods. Surprisingly, all mean MED

values for the variant with cube size 9 are much higher than those with cube size 7.

Comparisons made to the reference methods show that computed streamlines are highly

significant. The best variant assumes a cube size of 7 and a threshold value of 0.4, resulting

in the lowest mean MED value compared to all three reference tractograms. Anatomical

significance is also relevant. Tractograms resulting in a low number of short streamlines do

not reflect well anatomical fibers of the brain. Hence, the tractograms computed with a cube

size of 7 and threshold values of 0.6 and 0.8 shall not be considered anatomically significant,

similar to a cube size of 9 with threshold values of 0.8 and 0.9.

A visual evaluation of the tractograms supports these conclusions. Figure 9.4 and 9.5)

shows a comparison between EuDX reference tractogram (Fig. 9.4, a) on three sections

(sagittal, axial and coronal). All variants of the proposed method show a difference from

EuDX below 10 voxels of MED. The highest number of streamlines (4848) was computed us-
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EuDX
Cube size Threshold

Min MED Max MED Mean MED
5x5x5 0.4 13.9 17.31 16.13

0.4 3.41 19.82 9.34
0.5 3.45 18.63 10.12
0.6 3.63 17.45 8.12
0.7 4.73 16.00 10.34

7x7x7

0.8 6.64 11.96 8.52
0.4 3.83 20.47 11.51
0.5 3.38 20.15 10.40
0.6 3.73 19.79 10.27
0.7 3.18 20.31 10.20
0.8 4.36 15.88 9.54

9x9x9

0.9 5.04 14.86 9.40

Table 9.2: Comparison between tractograms computed with different cube sizes and thresh-
olds with a reference tractogram from EuDX method

CPDG
Cube size Threshold

Min MED Max MED Mean MED
5x5x5 0.4 16.38 57.76 37.56

0.4 4.09 26.78 15.28
0.5 4.09 26.78 16.51
0.6 8.65 25.10 16.66
0.7 9.48 23.06 18.45

7x7x7

0.8 4.31 23.06 14.42
0.4 3.63 26.29 16.74
0.5 4.37 26.03 16.08
0.6 5.92 27.74 16.90
0.7 6.24 25.64 17.51
0.8 8.11 25.64 18.32

9x9x9

0.9 8.90 25.42 19.42

Table 9.3: Comparison between tractograms computed with different cube sizes and thresh-
olds with a reference tractogram from CPDG method
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Figure 9.4: Comparison of selected tractograms with EuDX algorithm; a) EuDX; b) HyTract
with cube size 7, threshold 0.4, no. of streamlines 4848, mean MED 9.34; c) HyTract with
cube size 7, threshold 0.6, no. of streamlines 403, mean MED 8.12
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DMDG
Cube size Threshold

Min MED Max MED Mean MED
5x5x5 0.4 15.4 60.34 38.58

0.4 4.74 35.55 15.60
0.5 4.78 28.94 16.25
0.6 7.23 27.07 15.63
0.7 10.90 23.40 17.97

7x7x7

0.8 4.77 23.40 14.62
0.4 4.36 34.54 19.27
0.5 5.48 31.78 17.21
0.6 5.27 34.24 17.30
0.7 6.34 31.37 18.02
0.8 6.34 29.07 17.62

9x9x9

0.9 11.38 27.09 19.25

Table 9.4: Comparison between tractograms computed with different cube sizes and thresh-
olds with a reference tractogram from DMDG method

Smoothing window size EuDX CPDG DMDG
0 9.61 15.45 15.78
3 9.49 15.38 15.70
5 9.34 15.28 15.60
7 9.17 15.16 15.49
9 8.98 15.03 15.36

Table 9.5: Different smoothing window sizes compared with reference tractograms

ing a cube size of 7 and a threshold of 0.4 (Fig. 9.4, b). They span both hemispheres and reach

the anterior parts, as expected from anatomy. One major track arranges superior to the Cor-

pus callosum. Another one, in the middle of the sagittal section, reaches towards a thalamus.

A part of this structure, the lateral geniculate nucleus (LGN), is a gateway through which vi-

sual information reaches the cerebral cortex [133]. The third major track reaches towards the

temporal lobe, creating a connection important for visual perception and memory [134].

Other presented variants lack most of the expected fibers. For instance, the variant with

a cube size of 7 and a threshold of 0.6 (Fig. 9.4) reconstructs a track superior to Corpus cal-

losum but does not reconstruct others. Furthermore, most variants compute only a small

number of short streamlines originating mainly in the left hemisphere, as shown in Fig. 9.5.

9.2.2 Different window size in path smoothing

For experiments with different smoothing window sizes, a tractogram computed with a cube

size of 7 and a threshold of 0.4 was used. The smoothing method was applied to all stream-

lines, with a window size of 3, 5, 7, and 9. Results are gathered in Table 9.5. With increasing
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Figure 9.5: Selected tractograms computed with the hybrid model; a) cube size 7, threshold
0.8, no. of streamlines 18, mean MED 8.52; b) cube size 9, threshold 0.8, no. of streamlines
449, mean MED 9.54; c) cube size 9, threshold 0.8, no. of streamlines 296, mean MED 9.40
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window size, the mean MED value tend to decrease. However, the change is quite small,

especially considering the large number of streamlines in the set.

9.3 Tests summary and discussion

Final results were obtained by performing tractography for selected starting points of the

gray-white matter interface of cortical region V1. These computations were performed on

data from a patient who was not a part of the training and validation sets. The resulting

tractograms were compared with reference ones obtained for the same starting points (using

methods EuDX, CPDG and DMDG). Both visual analysis of the results and metrics using the

mean Euclidean distance (MED) between fibers indicate significant potential for the clinical

application of this method. Compared to one of the methods mentioned above, the average

MED values were less than 10 voxels, comparable to the differences observed between the

reference methods. The best variant assumes using a cube size of 7 and a threshold value

of 0.4. It lands many long streamlines, closely reflecting streamlines computed by reference

methods. Even more critical, computed streamlines follow anatomical tracks expected to

originate from the V1 cortex.

The use of smoothing shall not be neglected at all, given the anatomical organization of

the fiber tracks in the brain. As shown in Figure 6.10, the presented method can result in

paths with sharp turns. These do not occur naturally. The smoothing shall be used, prefer-

ably with a relatively small window size, e.g. 5. A larger window size could significantly

change the fiber topology determined by the path search algorithm, which is not desirable.
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10 Conclusions

Tools that support the work of neurosurgeons in planning and performing operations are in-

valuable. Thanks to their use, the operations’ time is significantly reduced. Most importantly,

fed with the right data, such systems allow neurosurgeons to determine the entry point and

scope of the intervention precisely. Good planning, in effect, significantly reduces the risk of

complications and unwanted side effects, such as aphasia or paralysis.

This thesis introduces a new tractography technique that can be successfully used in

neurosurgical planning - HyTract. The method uses a hybrid model consisting of an arti-

ficial neural network and an A* path search algorithm. The neural network is responsible for

analyzing diffusion data (DTI), and the result of its analysis is the input to the A* algorithm.

The diffusion data is processed in small portions, cubic chunks of the entire scan with

a side length of 5, 7, 9, or more voxels. With this approach, it is unnecessary to process all

the scan data simultaneously. The locations from which the slices are picked are determined

during the tracking itself using the A* algorithm. As a result, it is possible to calculate the

topology of nerve fibers starting at the specified locations (seed points) of the 3D MRI scan.

The deep network architectures developed in this work were trained on five scans ob-

tained from a publicized database of the international Human Connectome Project (HCP)

initiative. The resulting models achieved excellent performance with a ROC AUC measure

above 0.95.

Tests performed on a single subject, which was not a part of the training and validation

subsets, show that ANN combined with a path search algorithm allows for determining neu-

ral tracts with satisfying accuracy. Moreover, these experiments were carried out in another

brain area (V1 cortex) as training (Broca region), showing the method is not biased towards

the brain area it was trained with.

The HyTract method presented in this thesis is an original contribution to the technical

sciences in the field of information technology and telecommunication. It provides a novel

technique to compute tractograms, which can be successfully used in the preoperative plan-

ning pipeline, as it only requires basic knowledge of tractography from the user and assumes

no prior programming expertise. As the neural network processes the DTI diffusion data,

it does not require tedious preprocessing steps as in the case of already available methods.

When trained on raw material, the network tends to cope very well with noise and artefacts,
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naturally occurring in imaging studies when a strong magnetic field is used.

Furthermore, the proposed ANN architecture can be trained for other tasks like detecting

crossing fiber points. Implementation of the path search algorithm can be replaced by oth-

ers, allowing to obtain additional features of the white matter using the same underlying data

from the artificial neural network. An example is connectomic studies, concerned with elu-

cidating neural fibers connecting different functional areas of the cortex, passing the vicinity

of the surgery site. Such knowledge is incredibly valuable, allowing neurosurgeons to assess

the risks of impairments associated with specific motor or cognitive tasks. The modularity

of the technique itself makes it very versatile, providing a wide range of applications.

The versatility of the method comes with straightforward architecture. ANN has a rather

simple architecture, with a small number of learnable parameters, nevertheless allowing it

to achieve the goal. Splitting the DTI data into two separate inputs, processed by an indi-

vidual set of weights, boosts the network’s performance, allowing the use of just two addi-

tional fully-connected layers with a limited number of parameters. Given the small size of

the network, such architecture can be trained with ease, even on a personal computer with

a graphical processing unit (GPU) not designed for professional use.

The artificial neural network used in the HyTract processes the input data in small sam-

ples, a cube with a side length of 5, 7 or 9 voxels. The sampling is based on labels prepared

from the tractograms during the training. Hence, thousands of cubes can be sampled from

a single study, which allows for training the network on a small number of patient scans.

As the amount of data available in clinical settings is often limited, such an approach is

favourable.

The hybrid nature of this technique ensures the explainability of the obtained results.

The output of the artificial neural network is used to build a graph, which is then used to

determine the topology of the neural fibers. This makes it possible to interpret the reason for

which individual fibers were computed. This is incredibly important, especially in medical

applications when such a system is intended to support the work of clinicians. The corre-

lation of the method’s reasoning with medical knowledge increases physicians’ confidence

while using it in preoperative planning.

The results presented in this dissertation prove the thesis that an artificial neural network

combined with a path search algorithm is an efficient method for determining the topology

of nerve fibers.
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