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Abstract

Neurosurgery is one of the youngest and most demanding fields of medicine. It concerns
surgical interventions within the central nervous system - the system that coordinates and
influences the activity of all parts of the human body. Most neurosurgeries focus on the brain
itself. It is a delicate organ of microscopic cellular structures that require extreme precision
during the intervention. Despite the risk of impairments, such surgeries are necessary for
treating many pathologies, like glioblastoma.

The development of imaging techniques in recent decades, especially MRI, helped pro-
foundly to map important structures non-invasively. Specific modalities, like fMRI or DTI,
allow visualization of the near-precise location of functional regions and neural pathways,
respectively. These experiments result in a large amount of data that has to be thoroughly
analyzed. This task puts much work on radiologists, especially when not equipped with addi-
tional tools, like image recognition algorithms. In recent years, artificial intelligence has as-
sisted radiologists and neurosurgeons in their work through decision support systems. They
are developed to analyze experimental results landing advice for trained physicians. They
can help better plan and perform neurosurgeries by integrating with live neuronavigation
systems.

This thesis introduces a novel method for analyzing diffusion data obtained from MRI
experiments. A presented hybrid technique comprises a neural network for diffusion data
analysis and a path search algorithm computing the topology of nerve fibers based on the
analyzed data. This information is suitable for multiple applications, including estimating
the topology of the neural pathways near the surgical field or producing maps of connec-
tions between different brain functional areas. Neurosurgeons and radiologists can use such

knowledge for pre-operative planning and intra-operative navigation.



Streszczenie

Neurochirurgia to jedna z najmlodszych i najbardziej wymagajacych dziedzin medycyny.
Dotyczy interwencji chirurgicznych w obrebie oSrodkowego uktadu nerwowego - systemu,
ktéry koordynuje i wplywa na aktywno$¢ wszystkich czesci ludzkiego ciala. Wiekszo$¢ oper-
acji neurochirurgicznych skupia si¢ na samym mozgu. Jest to delikatny organ o mikroskopi-
jnych strukturach komoérkowych, ktére wymagaja niezwyklej precyzji podczas interwencji.
Pomimo ryzyka upos$ledzenia, takie operacje sq niezbedne w leczeniu wielu patologii, jak
np. nowotwory moézgu (glioblastoma).

W ostatnich dekadach rozw6j technik obrazowania, zwlaszcza MRI, umozliwit nieinwazyjne
mapowanie waznych struktur mézgowych. Specyficzne rodzaje technik, takie jak fMRI czy
DTI, pozwalajg na wizualizacje niemal doktadnej lokalizacji region6w funkcjonalnychi$ciezek
neuronowych. W wyniku tych eksperymentéw powstaje duza ilos¢ danych, ktére musza byc¢
dokladnie przeanalizowane. Zadanie to naklada wiele pracy na radiologéw, zwlaszcza gdy
nie sg oni wyposazeni w dodatkowe narzedzia, takie jak algorytmy rozpoznawania obrazéw.
W ostatnich latach sztuczna inteligencja wspomaga radiologéw i neurochirurgéw w ich pracy
poprzez systemy wspomagania decyzji. Wspieraja one analize wynikéw eksperymentéw da-
jac wskazéwki wyszkolonym lekarzom. Systemy dedykowane neurochirurgii pomagajq lep-
iej planowac i wykonywac operacje neurochirurgiczne. NiektOre rozwigzania integrujq sie
rOwniez z systemami neuronawigacji na zywo.

W niniejszej rozprawie prezentowana jest nowatorska metoda analizy danych dyfuzyjnych
uzyskanych w wyniku eksperymentéw MRI. Przedstawiona technika hybrydowa taczy sieci
neuronowe do analizy danych dyfuzyjnych z algorytmem wyszukiwania $ciezek wyznacza-
jacym topologie wiékien nerwowych na podstawie analizowanych danych. Proponowana
metoda moze znaleZ¢ wiele zastosowan, w tym do okres$lania topologii §ciezek neuronowych
w poblizu pola operacyjnego lub tworzenia map polaczenn pomiedzy r6znymi obszarami
funkcjonalnymi mézgu. Neurochirurdzy i radiolodzy moga wykorzystac pozyskiwang dzieki

niej wiedze do planowania przedoperacyjnego i nawigacji Srédoperacyjne;j.
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1 Introduction

1.1 Problem statement

Gliomas are one of the most common primary brain tumors. They are classified into four
histological grades, with high grades, i.e. III and IV (glioblastoma) being the most frequent
[1]. Unfortunately, in the case of high grades, the prognosis for a patient is poor, given the
high invasiveness and ability to infiltrate neighboring neural tissue [2]. In addition to radia-
tion therapy, resecting the tumor mass can improve treatment outcomes.

Even though such surgeries are beneficial, they are invasive, particularly when the tumor
infiltrates significant cortical regions. Damaging these cortical structures during surgery can
impair the patient’s motor or cognitive functions [3, 4]. In addition, it is essential to keep
their connections intact. Damage to such can have similar effects as damaging cortex re-
gions themselves. To partially solve this problem, resection can be performed in several
surgeries. Only part of the mass is removed during the first surgery to keep important struc-
tures intact. Thanks to brain plasticity, the rest can be removed in consecutive attempts. It
has been shown that such regions can shift slightly on the brain’s cortex with time, allowing
it to remove more infiltrated tissue [5].

A key aspect of successful treatment is good diagnostics. Good resolution in brain visu-
alization in vivo implies a constant need to improve imaging techniques and image (signal)
processing algorithms. Different modalities of Magnetic Resonance Imaging (MRI) can be
used to examine the brain structure non-invasively [6]. The brain’s anatomy can be investi-
gated via T1 and T2 MRI sequences. In such imaging, however, only a limited set of features
can be visualized (e.g. grey and white matter). Other MRI modalities can depict other fea-
tures, such as functional MRI (fMRI), allowing visualization of functional cortex areas [7, 8].
Diffusion-weighted imaging (dwMRI) [9], particularly diffusion tensor imaging (DTI) [10],
can project all the neural connections across various regions. The information provided by
these modalities helps to build a comprehensive view of the structural and functional con-
nections between different areas of the brain.

An important part of this view is the precise location of the white matter fibers. Their re-
construction based on the diffusion signal is addressed by tractography. Many methods have

been developed to achieve this task. However, they provide a specific probability level. More-



over, insight from the trained radiology specialist is needed. Based on anatomical knowledge
and expertise, such an expert can assess the topology of the nerve fibers with higher assur-
ance than a single method. Besides precision being at stake, these methods usually require
multiple steps of preprocessing and fine-tuning, which makes them hardly accessible to neu-
rosurgeons.

An accurate understanding of the patient’s brain connectivity is crucial when planning
and performing neurosurgery. To make tractography more accessible to physicians special-
izing in areas other than radiology, a hybrid model based on an artificial neural network and
a path search algorithm has been proposed. This model can effectively compute the location
of nerve fibers with high probability using DTI data. Leveraging the artificial neural network
for DTI data analysis reduces the amount of preprocessing steps required. With the success-
ful implementation of this model, the system will be able to project the location of critical
cortical regions based on functional MRI data and adjacent neural connections based on the

tractography results, facilitating the planning and execution of the surgical intervention.

1.2 Motivation

Despite various methods for delineating nerve fibers, they face problems that make these
solutions not readily adaptable for preoperative planning. Tractography methods require
data cleaning before analysis. Diffusion data have noise and artifacts created by strong mag-
netic fields, and their presence can lead to suboptimal, or even erroneous, results. Moreover,
these methods tend to produce many false positives. Hence, several tractography methods
must be used to compute a fiber arrangement closely reflecting the true one. Existing arti-
ficial neural networks proposed for tractography tasks are trained for specific applications,
making these methods challenging to adapt to similar tasks, such as searching for crossing
points (joining and splitting fibers) and looking for fibers connecting two given functional
regions. To properly predict and visualize the white matter near the surgical field, it is nec-
essary to use several different tools, which creates additional work for the surgeon during

preoperative planning.

1.3 Aims and thesis statement

Research carried out and described in this dissertation focused on designing an artificial

neural network coupled with an effective path search algorithm. Using an artificial neural



network for diffusion data processing will allow using data subjected only to preliminary
preprocessing steps. In addition, processing the data in small batches allows training of the
model on small datasets, given a single scan provides numerous training examples. Adapt-
ing a path search algorithm will allow for determining fibers near the surgical site, connect-
ing different brain areas, and differentiating fiber crossing points. The hybrid model adds
explainability as the artificial neural network computes the graph fed into the path search
algorithm. Therefore, it is possible to analyze the data from which the fiber was computed.

In summary, this thesis states the following:

Artificial neural network coupled with a path search algorithm is an effective and effi-

cient method to compute tractograms.

The formulated thesis was proved by carrying out the following research tasks:

development of a method for creating labels based on tractograms obtained by various

techniques from diffusion data,

* designing and training of the artificial neural network (ANN) for diffusion data pro-

cessing,

e implementing a modified variant of the A* algorithm for a path search in a graph build

based on the ANN output,
* implementing an automated pipeline to compute tractograms on real data,

e carrying out a series of experiments, showing the results of the automated pipeline on

real data.

An automated pipeline allowing to use hybrid method consisting of ANN coupled with a path
search algorithm for tractography was implemented and named HyTract (HT). In the future,
this method will be used in real-life preoperative planning as a part of the decision support

system for neurosurgery.



1.4 Structure of the dissertation

This thesis is composed of ten chapters:

- The first chapter introduces the problem statement, motivation, aims, and a thesis

statement regarding the hybrid model.

- The second chapter describes the medical background - the anatomy of the central
nervous system, including the organisation of white matter within the brain. Gliomas
are described, together with their treatment. This chapter also characterizes magnetic
resonance imaging and preoperative planning with tractography as crucial steps be-

fore brain surgery.

- The third chapter focuses on artificial neural networks, describing the principles be-
hind their design and training. This chapter concludes with an overview of available

Al methods in medicine, with special emphasis on decision support systems.
- The fourth chapter describes path search algorithms.

- The fifth chapter describes related works in tractography, divided into mathematical

models and machine learning approaches.

- The sixth chapter defines the hybrid method for tractography, HyTract. It character-
izes the general overview, architecture of the neural network, and adaptation of an A*

algorithm for path reconstruction.

- The seventh chapter describes the processing and analysis of the diffusion data. It
contains a description of the usual preprocessing steps, as well as a description of how

the labels for training and validation of the neural network were prepared.

- The eighth chapter describes the experimental setup and the dataset used for train-
ing and validating the HyTract ANN. The results of all experiments carried out are de-

scribed. The chapter ends with the experimental results discussion.

- The ninth chapter focuses on the HyTract as a whole. Experimental setup and dataset
for testing HyTract on real data are described, followed by experimental results. The

chapter concludes with a results discussion.

- The tenth chapter concludes the thesis.



2 Medical background and challenges in modern neurosurgery

2.1 Introduction to Neurophysiology

2.1.1 Functional anatomy of the brain

The human nervous system is divided into peripheral (PNS) and central nervous systems
(CNS). The peripheral nervous system involves cranial and spinal nerves, which are respon-
sible for communicating all body parts with the CNS. The central nervous system has two
main parts: the brain and the spinal cord. The brain resides in the cranial cavity of the skull,

while the spinal cord is in the vertebral canal.
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Figure 2.1: Anatomy of the brain [11]

The brain is subdivided into the medulla, pons, cerebellum, midbrain, diencephalon and
two cerebral hemispheres (Fig. 2.1) [11]. The latter is the most highly developed part of the

CNS. A long cleft-longitudinal fissure and the diencephalon separate the two hemispheres.



The brain’s surface, the cerebral cortey, is highly convoluted, which is an evolutionary adap-
tation to accommodate greater surface area in the limited space of the skull. Elevated parts of
convolutions are named gyri. They are separated by grooves called sulci or fissures. Beneath
the brain’s surface are many essential structures, including nerve fibers providing informa-
tion transfer between different parts of the cortex.

Nervous tissue, building both PNS and CNS, has two major types of cells: neurons and
glial cells. Neurons are responsible for the nervous system’s primary function and produce
electric potentials. Glial cells, on the other hand, do not take an active part in signalling but
provide support and protection for neurons [12].

Neural cells consist of the cell body and extensions called processes. An axon is one of
the processes that is always elongated and connects a neuron with its target (e.g. another
neuron/neurons). A single neural cell always has only one axon, which can branch into axon
terminals, allowing a neuron to connect with many target cells. Shorter processes are present
in bigger numbers and are called dendrites. They connect with axons of other cells and are
responsible for receiving input (Fig. 2.2). In hemispheres, neural cell bodies stacked in lay-
ers form a cerebral cortex. Their axons, organized in bundles, form nerve fibers. Due to
the myelination of the axon (discussed in more detail in section 2.1.2) they have a whitish
color, contrary to the cell bodies, which are grayish. Hence the cortex is made of gray matter
with white matter below. This division is noticeable in medical imaging (Fig. 2.9) or on the
specimens from the brain dissection.

Different parts of the cerebral cortex correspond to different functions. The surface is
split into four lobes named after cranial bones overlying them: frontal, parietal, occipital
and temporal. In 1909 German anatomist Korbinian Brodmann published maps of func-
tional cortical areas in humans, monkeys, and other species [14]. He defined those regions
based on the cytoarchitectural organization of neurons (Fig. 2.3). Since then, proposed ar-
eas have been debated and refined by the field, and nowadays, they are the source of coarse
localization of the functional regions in the cortex.

Three of the specified areas were of particular interest to the topic of this thesis. Two
of them, Brodmann area 44 (BA44, pars opercularis) and 45 (BA45, pars triangularis), are
described as the Broca area (Fig. 2.3). This area is located in the frontal lobe of the dom-
inant hemisphere (usually left) and is linked functionally with speech production. Pierre

Paul Broca discovered this link by observing two patients who lost the ability to speak after
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injury to pars triangularis (BA45). Since then, a deficit in language production is known as
Broca’s aphasia. Recent fMRI studies have shown that speech production can also be linked
to other areas, described together as the Broca region [15].

Brodmann area 22, called Wernicke’s area, is located in the superior temporal gyrus in the
dominant hemisphere (Fig. 2.3). It is functionally and anatomically connected with Broca’s
area and is responsible for comprehending written and spoken language. Injury to that part
of the brain results in fluent aphasia. In this case, a person connects words fluently; however,
the sentences lack meaning.

Even though the localization of these areas have been established and debated through
experiments throughout the years, their precise location differ among patients. Therefore it
is essential to investigate their precise location before any surgical interventions involving

nearby areas to avoid unnecessary damage leading to impairments.

2.1.2 White matter and neural circuits within the brain

The inner part of both hemispheres consists predominantly of white matter. It is formed by
axons of the neural cells, which transfer the information as action potentials (Fig. 2.4). Infor-
mation is always conducted from the cell body through the axon to the axon terminals and
then to other neurons. Axons are tightly surrounded with myelin sheath made by Schwann

cells and oligodendrocytes, two types of glial cells. It is rich in a fatty substance called myelin,
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Figure 2.3: Brodmann’s map of the brain cortex [14]

giving the axons a whitish color. In addition to its protective function, this envelope allows
action potentials to be conducted with increased velocity. It is possible due to constrictions
on the surface, called the Nodes of Ranvier (Fig. 2.4). Instead of being carried along the entire
length of the axon, the potentials jump between these constrictions.

Neural circuits are formed by connecting axon terminals with dendrites of other neu-
ral cells at the synapses. A schematic representation of the synapse is shown in Fig. 2.5.
The neuron serving as a source of information is called a presynaptic neuron, and the neu-

ron receiving information through dendrites is named a postsynaptic neuron. Most often,
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Figure 2.5: Schematic representation of a synapse

a synapse is not a continuous connection between two neurons, and neurotransmitters me-
diate the transmission of information. These small molecules are secreted by the axonal
terminus to the synaptic cleft and recognized by the receptors on the dendrite membrane.

Bundles of axons have unbelievably many names, but the most common is a tract. They
serve as a signal transmission medium between different brain parts and the brain, periph-
eral organs, and tissues. Fig. 2.6 depicts some of the most common neural fibers in the
human brain. Based on their role, tracts can be divided into the association, commissural
and projection fibers.

Association tracts connect cortex areas located in the same hemisphere. While short
fibers connect gyri within the lobe, long ones connect areas in different lobes of one hemi-
sphere [16]. The cingulum and superior longitudinal fasciculus (SLF) are two primary ex-
amples of association fibers. The cingulum allows communication between components of
the limbic system. It projects from the cingulate gyrus to the entorhinal cortex [11]. The
SLF subdivides into FSL I, II, and III. It connects the frontal, occipital, parietal and temporal
lobes [17]. All discussed fibers are depicted in Fig. 2.6.

Commissural tracts connect cortical areas in the two hemispheres and allow them to
communicate with each other. Connections between the hemispheres are called commis-
sures. Most of the fibers pass through the corpus callosum. It is the biggest commissure and
the largest white matter structure at the same time. Two other essential commissures are

anterior and posterior commissures [11].
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Projection fibers connect the cortex with the corpus striatum, diencephalon, brainstem
and spinal cord, allowing communication between the brain and the rest of the body. As-
cending tracts communicate sensory information to the brain, while descending tracts com-
municate motor information from the brain to peripheral organs through the spinal cord
[11]. Examples of these can be observed in Fig. 2.6 as cortico-spinal and cortico-pontine
tracts.

Before the invention of diffusion-weighted imaging, tracking neural fibers was possible
only with post mortem dissection of the brain. The development of MRI techniques allowed
the investigation of these structures in vivo. Details of these techniques will be discussed in

the following sections.

2.1.3 Gliomas and their treatment

Malignant gliomas are the most common primary brain tumor, accounting for about 80% of
cases. Due to poor prognosis and deterioration in the standard of living, including worsening
cognitive function, it is a very harmful and invasive kind of cancer [2]. They easily infiltrate

nearby parenchyma but are limited to CNS and do not metastasize. The World Health Or-

10



ganization (WHO) classifies gliomas into four histological grades. From grade I to grade 1V,
the degree of undifferentiation, anaplasia and aggressiveness increases. [1]. The most com-
mon are grade IV and grade III. Grade II tumors are less differentiated but may progress into
higher-grade tumors.

The most common symptom is a unilateral headache associated with the same side of
the head as the tumor location. Nevertheless, it can still be mistaken for benign headaches.
Similarly, other symptoms like cognitive dysfunctions and personality changes might be mis-
taken for psychiatric disorders or dementia, especially if observed in older patients. The best
diagnostic tool is an MRI scan, with CT reserved for people who cannot undergo MRI scan-
ning (e.g. patients with pacemakers). Even though gliomas are easily identifiable with an
MRI, wide screening is not advisable since early diagnosis and treatment do not improve
outcomes [2].

Corticosteroids, e.g. dexamethasone, may reduce the severity of neurological symptoms.
However, they might cause side effects, especially when CNS lymphoma is present. In pa-
tients with seizures, antiepileptics are required. Regardless, there is no evidence of benefit
from the prophylactic use of these drugs. Patients with suspected cancer are advised to un-
dergo tumor resection surgery. That way, more detailed mass characterization is possible,
including grading [19]. Resection of such a mass is a difficult task. Especially considering the
possibility of infiltration into the surrounding functional cortical regions. Imprecise surgical
intervention may cause damage to functional regions or nerve pathways adjacent to these
areas, leading to patient impairments - motor or cognitive.

Therefore, detailed planning should be performed before intervention occurs, including

studies using functional MRI and diffusion MRI.

2.2 Magnetic Resonance Imaging

2.2.1 Introduction to MRI

Magnetic resonance imaging (MRI) allows for imaging of the anatomy and physiology of the
body. It uses a very strong magnetic field and radio frequency waves during the scan, making
it completely non-invasive. In contrast to other radiology techniques, such as X-ray, com-
puted tomography (CT) or positron emission tomography (PET), it does not use radiation or
ionization, making it completely safe for the patient. MRI was initially used for anatomical

depiction. However, with the development of different MRI modalities, the clinical applica-
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tions nowadays are very wide, including neurology, cardiology and psychiatry.

Scanner bore

RF transmit coil

Magentic gradient coil

Thermal insulation

Superconducting coil

Coolant

Figure 2.7: Cross-section of an MRI scanner

The MRI scanner consists primarily of superconducting wire introducing a huge mag-
netic field (Fig. 2.7). It is kept at a very low temperature with liquid helium to allow super-
conductivity. The magnetic gradient coil is closer to the scanner bore where the subject is
placed. It allows for the introduction of a variation in the local magnetic field. This process is
crucial for the proper signal acquisition from the whole subject volume. Characteristic noise
heard during the MRI scan is caused by these gradient coils switching very rapidly. Closest to
the patient is the radio frequency (RF) transmission coil, which excites protons in the body
(the working principles explained later in the text). Coils receiving emitted energy are placed
close to the body and are not attached to the magnet’s bore.

Hydrogen atoms in the human body have random alignment when no strong external
magnetic field is applied (Fig. 2.8 A). These nuclei align with the lines of the magnetic field
introduced by the scanner and thus are in a low-energy state (Fig. 2.8 B). Pulses of radio
frequency (RF) energy are then emitted and absorbed by the hydrogen nuclei, which effec-
tively change into a high-energy state. When radio frequency emission ceases, the hydrogen
atoms return to the low-energy state through various relaxation processes and emit back the
energy captured by the device as an echo signal (Fig. 2.8 C). The difference between the

excitation time and the echo signal is the relaxation time used to create the contrast using
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Fourier transformation to convert frequency information to intensity levels displayed on the
final images as a grey gradient. Different tissues in the body have different relaxation times,
which makes it possible to observe individual anatomical structures with MRI. The high sen-
sitivity of these measurements allows distinguishing even between soft and similar tissues,
such as the grey and white matter of the brain.

Distinct images can be obtained by tuning the appropriate parameters of the experiment.
The two main are repetition time (RT) and time to echo (TE). Repetition time describes the
time interval between separate pulses of RF energy emitted toward the sample. Time to echo
is the delay between delivering the radio frequency pulse in a particular location and receiv-
ing the echo signal.

The most common are T1 and T2 modalities, used for anatomical depiction (Fig. 2.9).

T1-weighted images are constructed by using short TE and TR times to measure spin-lattice
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relaxation (the time it takes nuclei to realign with the magnetic field). T2-weighting uses
longer TE and TR times to measure spin-spin relaxation transverse to the magnetic field.
Certain tissues appear different on T1 and T2 images. Cerebrospinal fluid (CSF), present in
the ventricles and surrounding the cortex, appears dark on T1 and bright on T2; gray matter
is much darker on T2 than on T1; the white matter is bright on T1 and dark on T2 (Fig. 2.9).
In addition to differences in color, each of these modalities provides benefits in diagnosing

various abnormalities like infections, edema, or tumors.

White matter
Gray matter

Ventricles

Figure 2.9: Exemples of T1 and T2 images

In addition to T1 and T2 images, two other modalities are widely used in neurosurgery:
functional MRI (fMRI) and diffusion-weighted MRI (diffusion-weighted imaging, DWI). The
latter is the basis for tractography and will be discussed in more detail in the following sec-

tion 2.2.3.

2.2.2 Functional MRI

Functional MRI allows radiologists and researchers mapping of different tasks to brain re-
gions in a given individual. As neurons performing tasks require more oxygen and nutrients,
the active brain region requires increased blood flow. Oxygen is transported in the blood
by hemoglobin, a protein containing an iron atom. Oxygen binds to the iron atom, making

it Tust’ temporarily. Since normal and rusted iron influence the magnetic field differently,
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we can measure the difference between oxygenated and non-oxygenated blood using MRI.
Because the contrast is obtained due to blood oxygenation level, this technique is called
blood-oxygen-level-dependent imaging (BOLD). Mapping a particular activity, like speak-
ing, hearing, tapping finger, etc., is challenging as this activity has to be separated from oth-
ers (e.g. hearing). It can be achieved using special paradigms prepared by neuropsycholo-
gists. These contain instructions for the patient to follow to activate brain regions responsi-
ble for the task under investigation, silencing other parts of the brain simultaneously.

The activity in a given cortex area is coupled with increased blood flow as active neurons
have higher requirements for oxygen and nutrients [20, 7]. Since neural cells do not retain
any energy reserves in the form of sugar or oxygen, these compounds must be delivered
quickly. Therefore, it is possible to measure brain activity by detecting changes associated
with blood flow [21]. The coupling between neural activity and an increased blood flow is
called hemodynamic response. A special sequence of pulses in MRI allows using blood-
oxygen-level-dependent (BOLD) as a contrast to map functional regions. As shown in figure
2.10, the BOLD signal increases about 5 seconds after neuronal activity occurs. This time is
needed for the vascular system to respond to the brain’s need for glucose and oxygen. When
the activity ceases, it falls below the original level, what is described as the post-stimulus
undershoot, and with time recovers to the baseline [22].

Presurgery studies aim to identify regions related to critical functions like speech pro-
duction and comprehension, moving limbs, or sensing. Clinical use is much harder given
that brain pathology, and the use of drugs can lead to changes in the blood flow that are not
related to neuronal activity [23]. In this type of diagnostics, it is extremely important to sepa-
rate the functionality under investigation from the background signal and other involuntary
activity. For this particular purpose, neuropsychologists design special studies paradigms

which help to achieve this goal.

2.2.3 Diffusion-weighted MRI

Diffusion-weighted imaging (DWI) is an MRI technique using special sequences of pulses to
obtain image contrast from the movement of different molecules in the body [24, 25]. The
most common molecule to track with this technique is water, present in all human body
cells. Water movement in tissue is not completely random due to natural obstacles such

as cell membranes and organelles. Therefore, patterns of water diffusion can unveil micro-
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scopic details of tissue architectures.
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Figure 2.11: Water movement in neural cell

In the case of cells with elongated shapes, the major direction of water movement is in
line with the longest axis. Thus tracking the movement of water molecules allows for deter-

mining the microscopic details of the tissue. In such an image, the intensity of a particular
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voxel reflects the rate of water diffusion and can lead to many applications. One of the most
interesting ones is the trajectory of neural fibers (Fig. 2.11). A special kind of diffusion imag-
ing, Diffusion Tensor Imaging (DTI), aims not only to produce contrast from the diffusion but
also to estimate the trajectory of neural tracts [10]. In practice, a DTI study contains a series
of measurements obtained with distinct orientations of diffusion-sensitizing gradients. This
information can be used by tractography methods developed to follow neural tracts within

the brain.

2.3 Preoperative tractography

Every neurosurgical intervention is preceded by detailed planning. At this stage, an optimal
entry site and the scope of intervention are determined. A procedure prepared in this way
reduces the risk of complications, including motor or cognitive impairments.

Planning begins with a detailed patient examination using various MRI imaging tech-
niques. First, anatomical imaging (T1 and T2 scans) is performed to determine the precise
location of the tumor mass. In the next step a study using functional imaging (fMRI) is per-
formed, considering the subject variance in the location of eloquent cortical regions. Such
a study allows to map functional regions proximate to the tumorous mass. Based on the
coarse localization derived from functional atlases, the clinician can narrow down the list
of tasks to be examined. The narrowing is essential for a fast diagnosis, given quite lengthy
experiments.

Another modality used before the surgery is diffusion tensor imaging (DTI). This data
can be used to elucidate the topology of the nerve fibers localized in close proximity to the
potential site of intervention. A procedure aimed at determining neural fiber arrangement
is called tractography, and the bundles of neural fibers are often referred to as tracts. Track-
ing (reconstructing fibers) starts with a seed. Tractography itself answers many interesting
questions regarding the functioning of the human brain. However, its application in neuro-
surgery has very specific aims.

Simply determining the location of nerve fibers near the surgical field is not enough.
Without knowing their origin or destination, one cannot make a prognosis about side ef-
fects caused by eventual damage. Hence, preoperative tractography shall be coupled with
fMRI experiments.

With this detailed information, the neurosurgeon can precisely plan an entry site and the
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scope of the intervention that will impose the smallest risk of damaging critical tissue. Fur-
thermore, neuronavigation systems help to achieve this goal by visualizing all the necessary
information during surgery. They are fed with anatomical images but lack information about

functional areas or topology of the nerve fibers.
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3 Artificial neural networks and their applications in medicine

3.1 Introduction to Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models inspired by the brain’s neural
networks. Such ANN consists of connected nodes based upon biological neurons. The out-
put of the single neuron results from executing a nonlinear function on the sum of its inputs.
Artificial neurons (nodes) are connected with others by edges. Both nodes and edges have
weights that change during the learning process and thus constitute the model’s parameters.
Models achieve their skills in the training process. Training is a process in which the
network is presented with input data (the sample) and corresponding expected output (the
label). After the network processes the input data, its output is compared with the expected
result. This comparison is made using the loss function, which maps the difference between
the two onto a real number. Mathematically, ANN training is a problem of optimizing the loss
function. It is achieved through backpropagation and usage of the optimization technique.
Backpropagation and different loss functions will be discussed in the following sections.
Many different ANN architectures have been proposed to tackle different tasks. The most
general ones are perceptrons and feedforward neural networks (FFNN). Problems related to
image recognition and classification are usually solved using convolution layers, where the
network learns the weights of filters used on the input images. Sequential data, like text or
video, require architectures to extract information encoded in a sequence of inputs. These
architectures are usually a sub-type of recurrent neural networks (RNN), best suited for con-

tinuous signal or prognosis problems.

3.1.1 Perceptron and feedforward networks

Designing a neural network for a given task is non-trivial, as many parameters must be con-
sidered. Neural networks consist of stacked layers processing input information into the
desired output envisioned by the training label. Before discussing different kinds of layers, it
is crucial to focus on their main building block - an artificial neuron.

A function of an artificial neuron can be easily related to the biological neuron (Fig. 2.2,
and Fig. 2.4). It receives input information (a vector of features) and produces a scalar value

output. The most basic neural network is a perceptron that can be trained for a binary clas-
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Figure 3.1: Architecture of McCulloch-Pitts neuron and modern artificial neuron

sification task [27]. Figure 2.2 represents a diagram of such architecture, a single McCulloch-
Pitts neuron, otherwise known as a threshold neuron. Input data vector xj, xo,...,X,, and
a set of weights w;, wy,..., w, are used to compute an output (y). For binary classification

with unipolar activation function (f(¢)), output values take

1, ¢>0,
y=flp)= (1
0, =0,
where
n
p=) wix;—0, 2)
n=1

where 0 is the threshold value of the activation function and n number of inputs. A single
perceptron can be used for binary classification tasks, whereas additional neurons must be
used for classification with more than two classes. Moreover, a single-layer perceptron is
suitable for learning patterns that can be separated linearly, as Marvin Minsky and Seymour
Papert showed that a single-layer perceptron cannot learn XOR function [28]. Neurons used
today take a slightly different form than the McCulloch-Pitts neuron (Fig. 3.1). In this model,
0 is replaced by bias b, added to the result of multiplying the input data and weights, resulting

in the neuron transfer function:

n
Q= Z w;x; +b. 3)

n=1
The unipolar activation function is replaced by a nonlinear activation function, such as
arectified linear unit (ReLU) [29].

Such artificial neurons are organized into stacked neural layers building modern artifi-
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cial neural networks. Figure 3.2 depicts a schematic representation of three types of neural
layers building a fully connected feedforward network, with circles representing single neu-
rons within the layer and arrows depicting weighted connections between them [30]. The
first is the input layer, accepting the input data passed to the other layers. With one or more
hidden layers, neural networks can perform complex analyses of the data they receive. They
are responsible for data transformation and feature creation. The last layer in a neural net-
work is the output layer. It processes an output of the last hidden layer, called the last hidden
state, to the desired output. An indispensable feature of a feedforward network is that con-
nections between the nodes do not form a cycle. Such cycles can be formed in recurrent
neural networks (discussed in the following section). Fully-connected layers are the most
abstract types, having the potential to learn the same tasks as any other layers. However,
designing and training such a network is tedious, and specialized neural layers shall be used

for particular input data.

3.1.2 Convolutional neural networks

Convolutional neural networks (CNN) were developed for processing data with grid-like
topology. They are most often used for image processing since an image can be viewed as

a two-dimensional grid of pixels [31].
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Figure 3.3: An example of convolutional network architecture

In a typical convolution network, convolution layers (or blocks of such layers) are typi-
cally followed by a pooling layer and fully connected layers. An input image data is of shape
N x C;;, x Hx W, where N is the batch size, C;, is the number of channels, and H and W
are height and width of the image respectively. The convolution operation performed by the
convolution layer is a dot product of the convolution filter with the input tensor. As the filter
slides through the input, the dot product of the operation adds to the feature map produced
by the layer. The filter has a specific, predefined size, e.g. 3 x 3 pixels, called the kernel size.
The amount of movement between the filter and the input, in the width and height dimen-
sions, is called the stride. The default stride is (1,1) and indicates movement by one pixel in
both directions. The resulting tensor has dimensions N x Cyys X Hyyr X Wy, and is the input
tensor of the next layer.

The pooling layer can be used globally to process the final feature map produced by the
last convolution layer or between two convolution layers. It reduces the dimensionality of
a tensor by combining the outputs of neuron clusters from one layer to the single neuron of
the next. Clusters commonly used are small, usually with 2 x 2 or 3 x 3 tilling size [32, 33], and
the either maximum value is used (max pooling), or the average (average pooling) [34, 35].

The final output is produced by fully connected layers, which process a feature map pro-
duced by convolution layers into final classification. To obtain a vector of probabilities for
each class, a softmax function is used. It turns an output of the last dense layer into a proba-
bility distribution of K outcomes, where K is the number of target classes.

Convolutional layers can be used in more complex architectures as well. An example is
an autoencoder developed for masking image data. The encoder part of the model allows
to mask image so it can no longer be identified visually without using a decoder. Encoded

version however, still carries information allowing for classification [36].
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Figure 3.4: Recurrent neural network

3.1.3 Recurrent neural networks

Many types of data are sequential. One of the best examples is speech, where individual
words have little meaning, and the entire message of the utterance is hidden in their proper
sequencing. Traditional neural networks cannot analyze such data effectively as they pro-
cess information one sample at a time. For proper reasoning from sequential data, a mem-
ory mechanism is required. Recurrent neural networks (RNN) achieve this by introducing
cycles to the graph of node connections between layers [37]. Hence, they can reason about
sequential data in tasks such as recognition of speech [38, 39] or unsegmented handwriting
[40]. Figure 3.4 describes the idea behind creating cycles within the network. Given a set of
sequential data x;, x»,..., x,, each layer of the network computes its hidden state, denoted
by hy, hy, ..., h,, which is saved and passed as a second input to the next layer (green arrows).
In the case of the first layer, a “hidden state” input is a vector of random numbers from a par-
ticular distribution.

RNNs work very well when the task requires context only from the recent elements of
the sequence. In theory, they are capable of learning long-term dependencies. However,
when RNN is trained with backpropagation, the long-term gradients can easily vanish (when
tending to zero) or explode (when tending to infinity). It is caused by computations that use
finite-precision numbers. When the gap between context and task increases, performance
deteriorates. A special kind of RNNs, the Long short-term memory (LSTM) network, partially
solves a vanishing gradient problem, as they allow gradients to flow unchanged [41]. They

also use special mechanisms allowing them to learn long-term dependencies. At their core
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is the cell state which is protected and controlled by three gates: forget, input/update, and
output. In this arrangement, a forget gate decides what portion of the information is unnec-
essary for the task and shall be forgotten. The input gate decides what shall be updated and

how. The last gate decides what information the layer shall output.

3.1.4 Attention mechanism

Many artificial neural networks include attention mechanisms in their architectures. This
technique was developed to mimic cognitive attention [42, 43, 44]. It enhances some parts
of the input data while reducing the importance of other parts. It follows the notion that not
all features are equally relevant to the task, and the neural network should focus mainly on
the crucial ones.

In recent years, attention gained popularity when Transformer architecture was intro-
duced [45]. It relies on attention for capturing global dependencies between input and out-
put. Authors achieve this by replacing completely recurrent layers with multi-headed self-
attention. Such architecture has better parallelization capabilities and trains faster than the

standard approach, achieving state-of-the-art performance at the same time.

3.1.5 Training neural networks with backpropagation

Originally backpropagation (backprop) was an algorithm for training feedforward neural
networks. Nowadays, many algorithms for training different ANN architectures fall under
this generalized term. Backprop calculates a gradient of the loss function during training,
considering all of the model’s weights. Such an approach allows greater efficiency than the
classical one, where the gradient is computed individually for each weight. This makes back-
prop suitable for training multilayer networks with ease [31].

In the case of the multilayer network, the derivatives of the layer weights cannot be sim-
ply calculated with respect to the loss function as in a single-layer network. This is especially
important given that all architectures nowadays include nonlinear transfer functions called
activation functions. To calculate derivatives, backpropagation uses a chain rule from calcu-
lus and is generalized by automatic differentiation - a special case of reverse accumulation as
in (). A gradient is computed for each layer separately, iterating backwards from the last layer
to the first (hence the term backward propagation). This prevents redundant computing of

the intermediate terms in the chain rule.
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Following the chain rule a derivative for the loss function Z (¥, ) in respect to weight w,

in case of a single neuron (Fig. 3.1) can be calculated as follows:

0% 0% dy 0% dy ap
dw, 0y ow, Jdy dpow,’

“4)

where ¢ is the output of the transfer function as in (3), and y is the output of an activation
function. The derivative of a neuron output y with respect to its input is the derivative of an

activation function, which for backpropagation to work has to be differentiable:

ay  of(@)

30 0p )

Many optimization algorithms can be used to train neural networks. Among them, two
are the most common: Stochastic Gradient Descent (SGD) [46] and Adam [47]. SGD is
a stochastic approximation of gradient descent, where the gradient is not computed for the
whole dataset. SGD uses its approximation calculated on the randomly selected data subset.
Such computation takes less time than the traditional method. Hence the time required for
training is much smaller.

Adam optimizer is another method for efficient stochastic optimization. Based on the
first and second moments of the gradients, it computes individual adaptive learning rates
for different parameters. This method is memory efficient as it only requires first-order gra-
dients. Nowadays, it is the most commonly used algorithm for training neural networks.

Foret et al. propose a Sharpness-Aware Minimization (SAM) method to minimize both
the loss value and the sharpness of the loss [48, 49]. It focuses on the set of weights in the
neighbourhood of uniformly low loss. With experiments on the benchmark datasets and
models, authors argue that using their optimization method can lead to state-of-the-art per-

formance with label noise robustness.

3.1.6 Activation functions

If we stack multiple fully-connected layers together, we could achieve the same goal with
one fully-connected layer with more neurons and weights. Adding non-linearity in the form
of activation functions allows for representing more complex functions. One of the core,

broadly used activation functions is a sigmoid function, accepting as an input, neuron out-
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Figure 3.5: The Sigmoid and Hyperbolic Tangent activation functions

put ¢ as denoted in Fig. 3.1. Sigmoid function f(¢) is expressed as

flo)= (6)

1+e @’

which plot is presented in Figure 3.5. It assumes values in the range of [0, 1], hence it is often
used to transform the real value output of the layer into a likelihood.

Another example is a hyperbolic tangent function (Tanh):

exp(p) —exp(—y)
exp(p) +exp(—¢)’

Tanh(y) = ()

which has a bigger range of output values, Tanh(¢) € [-1,1] (Fig. 3.5). Due to the negative
values of the output this function could not be used as a probability projection.

The commonly used is Rectified Linear Unit (ReLU), which is a simple maximum func-
tion:

ReLU (¢) = max(0, ¢). (8)

This method essentially activates only those neurons that output values equal or greater than
1 (Fig. 3.6). Leaky ReLU is a very similar function, however in that case also neurons produc-

ing small negative values are activated:

LeakyReLU (¢p) = max(0, @) + s-min(0, ¢), 9)
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Figure 3.6: The ReLU and Leaky ReLU activation functions

where an s parameter controls the slope of the negative side and, by default, is setto s = 1e—2
(Fig. 3.6).

When choosing the right activation function for the network, it is important to consider
the range of returned values and their derivate. Due to backpropagation and the chain rule,
the latter profoundly impacts how the network learns from the data. In the case of the sig-
moid function, its derivate values are in the range [0,0.25] and with an ¢ tending to —oco
and +oo0, the gradient converge to 0 (Fig. 3.5). This can contribute to the vanishing gradient
problem. Such a situation occurs when the input values from the earlier layers increase, and
the gradient becomes so small that it cannot involve the correction. The gradient of the loss
function V.Z at a given layer /, where [ = 1...L is the gradient at its subsequent layer £;_;

multiplied by the gradient of the activation function f(¢;):

V$1:V$1_1'Vf(¢l). (10)

If the gradient value is less than 1, the gradient on the layers distant from the output
will tend to 0. Layers with a gradient converging to 0, will stop the gradient propagation to
the farthest layers. Tanh function counters this problem by increasing the maximal gradient
value. However, it produces gradient values greater than 0.25 for the small range of ¢ values
(Fig. 3.5). The vanishing gradient problem is solved for ReLU and LeakyReLU functions, as all

activated neurons returning positive values have a gradient value of 1 (Fig. 3.6). Despite that,
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ReLU introduces another problem known as the dead neuron or the dying ReLU problem.
Gradients of all inactive neurons are equal to 0, which can result in the consistently inactive

neuron.

3.1.7 Loss functions

Choosing the right loss function is extremely important in training a neural network. This
function compares the expected result (a label, denoted with y) with the network’s actual
output denoted by j. The result mapped onto the real number directly impacts how the op-
timization algorithm updates the model weights. The wrong choice can result in a subopti-
mal or incorrect representation of the differences between the output and the label, pushing
the model weights toward achieving a different goal.

The most simple loss function is 0-1 loss:

o 1 for 7#7y,
L,y = (11)

0 for y=y,

where 7y is the output of the network, and y is the label. In practice, this indicator function
returns either 0 or 1, which is not very useful in learning with optimization algorithms, as it
does not provide information about how far the current solution is from the expected one.

A more informative loss function is quadratic loss:

L@, =CH-i>. (12)

In this equation, C is the constant value and is usually ignored by setting C = 1, resulting in
the basis for calculating Mean Squared Error (MSE). Before defining an MSE loss function in
(15), we will define a loss function for a batched input. Given the batch size is M, the loss

function can be described as:

L@ N=2L={1G1y),.... 1(Im, M)} (13)

If we consider (12) and set C = 1 for batched input as in (13), we end up with MSE loss for

a batched network output:

LG m> Fm) = Pm — Fm)?, me (1, M]. (14)
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The MSE is defined as the mean of squared errors of all examples:

|
MSE=— Y (Jm—Jm)", mell,Ml. (15)
M =

Even though MSE loss is much more informative in comparison to 0-1 loss, many ap-
proaches use Cross Entropy (CE) to calculate the loss between input features and desired
labels. Given the classes indices are in the range k € [0, K], where K is the number of classes,

and M is the batch size as in (13), a CE loss function can be described as follows

K
L =- Z Yilog(Px), (16)
k=1

where yj is the true label, and j is the Softmax probability for the k-th class. A CE loss can
be used for multi-class and binary classification problems. However, for the latter, a Binary

Cross Entropy (BCE) is more suitable

1

M
Y Y Imlogim+ (1 —m)-log(l =), mel[l,M]. (17)

m=1

P =

A softmax or sigmoid function usually has to be applied to the network output before
using these loss functions. Programming libraries, such as PyTorch, provide versions of the
loss functions mentioned above, operating directly on logit probabilities obtained from the

last layer. Some evidence from the field suggests that using these lays better results.

3.2 Application of machine learning in medicine

3.2.1 Genomics and proteomics

Even though genomics and proteomics are considered basic sciences, their developments
have a direct effect on medicine. Due to the massive amounts of data produced by next-
generation sequencing, its analysis is impossible without advanced algorithms, including
machine learning and deep learning. Such methods helped to sequence SARS-CoV-2 genome,
identify its variants, as well as design treatments, including vaccines [50]. Lowering the costs
of genome sequencing allows the inclusion of genetic information in the diagnosis and treat-
ment process. As shown by Sun et al. [51], SVM [52] is one of the available methods that can
be used to seek genes causing diseases such as cancer or diabetes. The availability of large-

scale data allows for studying the evolution and structure of proteins [53, 54, 55]. This is
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crucial to understanding the biochemical basis behind diseases and developing new drugs

[56, 57].

3.2.2 C(linical decision support systems

Computerized clinical decision support systems (CDSS) provide significant assistance in
diagnosis and treatment [58]. Such a system can use provided and computerized clinical
knowledge to interpret patient characteristics. It makes it easier to integrate the clinician’s
experience, the patient’s value and scientific knowledge in evidence-based medicine [59].
When CDSS are applied in the diagnosis domain, they are called diagnostic decision sup-
port systems (DDSS). They were developed to mimic a natural process of differential diag-
nosis performed by clinicians [60]. This procedure involves analyzing the patient’s history
and the results of other tests (laboratory, physical, imaging) to make an accurate diagnosis.
Because of the many factors that go into making a decision, this is a time-consuming process
with a risk of error, especially if it involves a rare condition with symptoms similar to other
conditions. DDSSs are developed as a diagnostic aid because computer systems can accu-
rately infer from large data sets, revealing correlations that a human expert might overlook.
They are not designed to replace phycisians, but merely provide with a list of possible diag-
noses given the patient information. Despite hopes of improving the diagnostic process, the
reception of the methods was not positive, given the poor accuracy and system integration
[61]. More specialized DDSSs have achieved greater success in application. For instance,
Kunhimangalam et al. proposed a system for diagnosing peripheral neuropathy [62]. Using
fuzzy logic, they integrate information about symptoms and results of the diagnostic tests.
Comparing the results of the model with the opinion of the experts, they achieved satisfac-
tory accuracy.

The CDSSs are also used during surgical procedures. A system described in [63, 64] helps
to localize a subthalamic nucleus (STN) in deep brain stimulation surgeries aimed at the
treatment of Parkinson’s disease. The location of the nucleus is established based on the
microelectrode recordings placed within the brain during the surgery. When close to the
STN, surgeon moves the electrodes 1 mm at a time and take 10 s of recording to analyze, till
reaching the STN structure. Described algorithm cleans and analysis the data by removing
high frequencies, sporious spikes and other artifacts using wavelet transformations [65] and

power spectral analysis. Recordings analyzed in this way can be passed to an a machine
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learning algorithm, which assesses whether the footage is from an STN or another structure.
Such analysis are necessary as this structure cannot be visualized on CT or MRI. The system
relieves the surgeon of the labor-intensive interpretation of the recordings, improving the
outcomes and decreasing the time of the surgery significantly.

Such systems are also used in aortic valve replacement surgeries [66]. These surgeries re-
main complex and technically challenging given the limited workspace and restrictive sur-
gical field. The system indicates an entry site optimal for the patient’s morphology based
on anatomical measurements from the preoperative CT images and the surgical guidelines.
An initial step is skin and bone structure segmentation using 3D region growing method
[67]. This process allows to detect sternum using image processing methods. Once the right
border of sternum is identified, an intercostal spaces (ICS) can be detected from the ribs
countur. Using clinical guidelines, this information can be easily used to propose surgical
technique best for the patient morphology. With interactive three-dimensional visualization
of all relevant information, it makes planning the surgery much easier.

Many DDSS systems are designed for radiology applications. These systems are described

in more detail in the following section.

3.2.3 Radiology

Radiology is a branch of medicine that focuses on the analysis of images obtained by vari-
ous techniques, such as X-ray, CT, MRI, and ultrasound. The successes achieved by neural
networks, particularly convolutional networks, in image classification have led researchers
to develop methods to support the diagnostic process of radiologists [68].

Ismael and Sengur developed and described in [69] a variety of models to classify chest
X-ray images into two classes: healthy and COVID-19 disease. They used well-known and
tested convolutional neural network (CNN) architectures (ResNet18, ResNet50, ResNet101,
VGG16 and VGG19) described in [70, 71], to extract features from X-ray images, which were
then classified by the support vector machine (SVM). CNN models were fine-tuned in a sep-
arate experiment to classify the original images. In both approaches, authors achieved ac-
curacy above 90%. Chest X-rays were also used by Sogancioglu et al. [72] to detect car-
diomegaly by anatomical segmentation and image-level classification. Models proposed by
the authors achieve great performance with a segmentation approach reaching an AUC of

0.977 and a classification approach with an AUC of 0.941.
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The use of deep learning in radiology is not limited to X-ray image analysis. ANNs were
also applied to a challenging task of brain tumor classification and grading [73] based on
MRIimages. CNN architecture used by the authors can detect three types of tumors: menin-
gioma, glioma and pituitary tumor, as well as differentiate between three grades: II, III, and
IV. The accuracy achieved in both tasks is above 96%, making it a feasible diagnostic aid.

Many methods were developed for the diagnosis of primary liver cancers and their metas-
tases [74]. A typical screening method for liver abnormalities is a periodical abdomen ultra-
sound. Guo et al. proposed and described in [75] a two-stage multi-view learning framework
for diagnosing liver tumors using contrast ultrasound images. The first stage corresponds to
the deep canonical correlation analysis on ultrasound images resulting in the multi-view
features. These features are fed in the second stage to a multiple kernel learning classifier
providing the final diagnosis.

Contrast-enhanced ultrasound cine clips were used by Ta et al. in [76] for classifying
benign and malignant liver tumors. They achieved performance with AUCs of 0.829 and
0.883 using artificial neural networks and support vector machines (SVM).

Various approaches are described in [77], which provide invaluable assistance in diag-
nosing neurodegenerative diseases. An example can be given by Payan and Montana in
[78]. They employed sparse autoencoders and 3D convolutional neural networks to detect
Alzheimer’s disease from MRI scans. Another example is using rather simple Alexnet archi-
tecture [33] to diagnose Parkinson’s disease based on T2 MRI. A system proposed by Sivaran-

jini and Sujatha, and described in [79], achieves accuracy of 88.9%.
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4 Path search algorithms

Pathfinding is the process of calculating the shortest route between two given points us-
ing a computer algorithm. It is a practical approach to solving maze-like problems and is
highly influenced by Dijkstra’s algorithm [80] for finding the shortest path on a weighted
graph. Pathfinding is related to the shortest path problem from graph theory, which focuses
on identifying the most suitable path between two points in a large network based on spe-
cific criteria, such as length, speed, or cost.

The pathfinding method involves searching a graph by starting at a given vertex and ex-
ploring adjacent nodes until reaching the target node. The objective is usually to find the
most cost-effective route. Two widely used algorithms allowing to achieve this task are Dijk-

stra’s algorithm and its variant - an A* algorithm, described in this chapter.

4.1 Dijkstra algorithm

Dijkstra’s algorithm was designed and published in [80]. It exists in many variants, while the
original version was developed for finding the shortest path between two nodes in a weighted
graph. An example of such an application is to find the shortest route between two cities on
a network of roads. In such a case, the nodes represent the cities connected with weighted
edges. The weights of the edges reflect the driving distance between the two given cities.
The algorithm computes the shortest path between the source node and every other node in
a graph, stopping when the shortest path between the source and target is found.

The first step of the algorithm is to mark all the nodes as unvisited and store them in
a set. Each node is assigned a distance value, 0 for the source and infinity for all other nodes.
The procedure computes the tentative distance value for all neighbouring nodes through
the currently investigated one. This new distance is compared to the presently stored value,
and the smaller is assigned. After all the neighbours are considered, the current node is
marked as visited and removed from the unvisited set. The process repeats by setting as
the current node, a node from the unvisited set, having the smallest distance value. The
algorithm finishes when the destination node is marked as visited, or the target node has the

smallest distance value among the unvisited ones.
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4.2 A*algorithm

A* algorithm was designed and published in [81]. It is a variant of Dijkstra’s algorithm, which
assigns a weight to each unvisited node equal to the weight of that node increased by the
approximate distance between the inspected node and a target node. This distance is ap-
proximated by the heuristic function h(v,, v;), which distinguishes this approach from the

original idea. Hence, for a given node v, an A* algorithm minimizes:

fvn) =gy +h(v,, vy, (18)

where g(v,) is the cost of the path so far, and h(v,, v;) is the heuristic function, estimating
a cost of a path from the current point v, to the target v,.

A* is equivalent to Dijkstra when the heuristic evaluates to 0. As the estimates increase
and come close to the true distance, the algorithm runs faster, still finding the optimal paths.
This expedited computation time is caused by inspecting a smaller number of nodes. The
smallest number is inspected when the value of the heuristic method equals the true dis-
tance.

Due to the use of a heuristic measure computed between the source and target node, the
use of this algorithm is restricted to finding the shortest path between two nodes (a goal-
oriented pathing). Hence, an A* algorithm does not allow to compute the shortest path-tree

between the source and all possible targets, as in the case of Dijkstra.
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5 Related works in tractography

One of the applications of computational methods in medicine is tractography. Its main
purpose is to compute the topology of the neural fibers, based on the DTI sequences of MRI
imaging. In preoperative planning it allows to visualize the organisation of white matter near

the planned surgery site, providing invaluable aid for neurosurgeons (see section 2.3).

5.1 Methods taxonomy

Figure 5.1 depicts the taxonomy of tractography methods. Because of their convergent pur-
pose, these methods are best classified by their approach. Hence, they can be divided into
classical mathematical models and learning models. Mathematical models are the results
of methods predicting the orientation of the neural fibers without support from machine
learning methodology. These methods can be subdivided into deterministic and probabilis-
tic approaches. The deterministic methods focus on elucidating the deterministic connec-
tivity between regions of interest. However, they are prone to errors due to the noisy nature
of MRI. Probabilistic methods take into account the uncertainty of orientation estimates.
When creating a streamline in each propagation step, an orientation of a fiber is drawn ran-
domly from the orientation distribution [82]. Even though they are computationally more
expensive, they are better suited for high uncertainty regions (e.g. crossing fibers) and where
noise is present [83]. Learning models include both classical machine learning approaches
and deep learning methods. With the development of these techniques, they have been suc-
cessfully applied in many areas, such as image recognition and classification [33, 71, 84], the

design of drugs [85], or patient’s scans [68] and genomes [86].

5.2 Mathematical models

Basser, one of the inventors of DTI imaging itself, proposed one of the first approaches to
tracking neural fibers [87]. His method is based on the fact that in each voxel, a trajectory
of the tract is parallel to the eigenvector associated with the largest eigenvalue of the local
diffusion tensor [10]. The question, though, is how to follow the trajectory of the neural path
across multiple voxels. As the author states using the eigenvectors is prone to fail as these

are inherently discrete and noisy and are just estimating the true direction of the water diffu-
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Figure 5.1: Taxonomy of tractography methods

sion [10]. His method calculates a continuous diffusion tensor field. In the next step, based
on that field, an eigenvector-field map is computed, which allows using the linear forced
vector differential equation to compute the trajectory of a tract, as the trajectory vector is
parametrized by arc length [87].

Lazar et al. [88] embarked on using not only the eigenvector of the biggest eigenvalue,
but to utilize the information carried by the whole diffusion tensor. This algorithm, called
TEND, uses the tensor deflection technique. Tracking is done in a stepwise fashion. The tract
direction from the previous step is considered the incoming vector, which is then deflected
towards the major eigenvector direction at a given position. The curvature of deflection is
limited to achieve smoother tracts. The resulting deflected vector depicts the directions of
the neural path in a voxel under consideration. This method introduces stopping criteria
allowing to block tract expansion when fractional anisotropy drops below a certain value or
when the change of the followed direction changes by more than 45°.

A nerve tract can be conceptualized as a path in the very dense graph representing all
anatomical connections within the brain’s white matter. Therefore, a group of researchers
decided to use path search algorithms, more specifically, some modifications of Djikstra’s
algorithm [80], to track nerve fibers.

Andrew Zalesky, in his work from 2008, describes fiber tracking as a problem in com-
puting shortest paths in a weighted digraph [89]. In such an approach, a single voxel be-
comes a vertex, and nodes are placed between vertices representing neighbouring voxels.
The weights are computed with a Bayesian framework and reflect the alignment with fiber
trajectories in the vicinity. More precisely, it quantifies how likely a given edge is tangential

to a small segment of the genuine fiber. A probability for the whole tract is computed as the
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product of probabilities assigned to the edges. To build such a graph and track fibers this
method requires two points as the input: the seed and the target. According to the authors,
this method produces the same fiber trajectory between two given points regardless of which
one is which.

A similar graph representation of a tracking problem was used by Sotiropoulos et al. [82].
This method is designed for probabilistic tracking through crossing fibers, based on orien-
tation distribution function (ODFs) derived from Q-ball imaging [90]. The main aim of this
work is to deal better with crossing regions. In such areas, voxels contain multiple fiber orien-
tations. This poses a challenge to propagate the current trajectory in the direction following
the underlying anatomical truth. The algorithm proposed by the authors considers multiple
fiber populations occurring in a single voxel (if partial volume exists). Hence the image is
treated as a multigraph, allowing to distribute the connectivities in a weighted manner with
the most probable tract obtaining the highest weight. Similarly to other methods, vertices
represent voxels from the diffusion data, connected with neighbours by edges. Partial paths
are constructed in the close vicinity of a voxel under consideration (cube sizes of 3 x 3 x 3 or
5x 5 x5) and scored based on the weights of edges. A trajectory with the highest score is then
selected as the elongation of the current one.

Work by Aronis et al. [91] proposes a novel cost definition for the graph edges, allowing
to take into account tract curvature and its alignment with the diffusion vector field. The
only modification to the Dijkstra algorithm, except for the cost function defining the edge
weights, is keeping the set of vertices with a determined distance from the source and the
distance map holding the current estimation of the distance of each voxel from the seed.
Calculating the cost function considers three terms calculated from the vector field. Min-
imizing these terms favours the smoothness of the calculated tracts and ensures that the
transition between the current node and the candidate nodes is as parallel as possible with
the diffusion eigenvectors. This method was tested on 2D and 3D synthetic data and the
clinical MRI-DTI study to show it can calculate known brain tracts.

MRtrix3 [92] is a freely available software package for medical image processing and visu-
alization. Among many useful tools, it implements global tractography using a multi-tissue
spherical convolution model, introduced by Christiaens et al. [93]. It is an approach which
extends the method proposed by Reisert et al. [94] to be used with multi-shell response func-

tions. It also adopts a multi-tissue model proposed by Jeurissen et al. [95] to differentiate be-
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tween white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). Although inter-
esting, global tractography are not of interest in neurosurgery applications. MRtrix package
implements, however, constrained spherical deconvolution [96], allowing to estimate fiber
Orientation Distribution Function (fODF). fODF can then be used by tracking algorithms to
compute tractograms. MRtrix implements both deterministic and probabilistic approaches
[97]. The deterministic algorithm computes a single fiber along its local orientation. The
Newton-Raphson gradient ascent algorithm is used to identify the nearest fODF peak it-
eratively. In the probabilistic approach, a future streamline direction is sampled from the
fODE Sampled directions are constrained to a certain angle from the current location. These
methods can produce smooth results and good resolution due to using different data sources
(such as HARDI imaging) and step sizes smaller than the voxel size. Tracking is stopped when
no satisfying fODF peak can be found or the area is outside the predefined ROLI.

The last mathematical model described here was proposed by Descoteaux et al. [98].
In this method, fODF is obtained by applying sharpening deconvolution transform (SDT)
of the diffusion ODF from Q-ball imaging [90]. The transform shows new insights into the
relation between the HARDI signal, diffusion ODF and the fODE The sparsity of the fODF
and the difference between Q-ball and real diffusion direction compel the use of sharpening
operation. Similarly to MRtrix, this method offers deterministic and probabilistic variants.
The deterministic approach extends classical streamline generation by considering multiple
fODF maxima at each step and the tract is elongated into one from 1281 possible directions.
The probabilistic approach extends a random walk method [99, 100], and it uses the informa-
tion contained in multidirectional fODE For calculating the topology of the tract, particles
are used that moves freely from the seed point, based on the local fODF information. Each
voxel is scored based on the number of particles that reached it. Elongation direction is cho-
sen from 120 discrete directions computed from the voxel scores with a step size of half the

voxel size.

5.3 Machine learning models

The first machine learning (ML) model for tractography was proposed by Neher et al. [101,
102]. Each streamline is elongated stepwise, similar to the traditional approaches. However,
local tissue propensities are not derived from mathematical models. Instead, a random for-

est classifier lays the directional proposals based on the raw diffusion data. An algorithm
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considers information from the closest neighbourhood when extending from a given point.
The model decides upon a new orientation and outputs probabilities for each direction to-
gether with non-fiber probability. Tracking stops when non-fiber probability exceeds the cu-
mulative sum of other probabilities. This study revealed that machine learning helps avoid
errors caused by MRI noise and local signal ambiguities.

The random forest classifier described above is the only tractography method using the
classical machine learning approach. All the other methods implement neural networks.

Poulin et al. describe two approaches to tractography, using feedforward (FFNN) and
recurrent neural network (RNN) [103]. While FFNN returns a three-dimensional vector de-
scribing fiber orientation for each point within the diffusion data, the RNN takes advantage
of the previously seen voxels by remembering features relevant to the entire streamline ori-
entation. The authors raise the issue of learning a proper stopping criterion. It requires
careful engineering and balancing of the loss function. Nonetheless, the presented method
achieved high spatial coverage on a given test set, controlling the number of false positives
at the same time. Another study carried out by the group postulated using RNN in a bundle-
wise manner. It results in improved tracking efficiency, a higher number of valid streamlines,
and better volume coverage in comparison to other methods [104].

RNNs were also used by Benou et al. in a method called DeepTract [105]. Like other
ML methods, it is suitable to work on various types of raw diffusion data. It estimates the
orientation of local fibers as a discrete probability density function, which allows to sample
directions at a given point. Choosing the right direction is treated as a classification task,
where the model outputs the probability of each orientation.

The methods available to solve the tractography problem are not directly applicable to
preoperative planning. Given the noise and artefacts that occur, they usually require a te-
dious data-cleaning process. Without this, there is a risk of obtaining suboptimal or even
erroneous results. Expertise is needed from the user not only in anatomy but also in the DTI
imaging, as well as methods used to infer directionality information on the level of voxels.
Successful fiber tracking is often possible only when using several available techniques, as
their results may differ. Moreover, individual methods are usually prepared for a specific ap-
plication, such as global tracking, local tracking or connectomics. In preoperative planning,
the ability to study fibers in all these aspects is a significant advantage. Thus, there is a need

for a method that can work on data that has undergone only basic processing and that does
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not require substantial domain knowledge. An indispensable advantage would be the abil-
ity to determine various structural features of the white matter, such as crossing fibers, or
computing only the fibers connecting two specific regions. Such a method could be success-
fully used by neurosurgeons providing additional knowledge about the white matter near

the surgical field.
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Figure 6.1: HyTract method for tractography

6 Hybrid method for tractography

6.1 Overview

A hybrid method for tracking neural fibers, HyTract (HT), was designed and developed. It
combines an artificial neural network (ANN) and a path search algorithm to calculate the
topology of the nerve fibers. Preoperative planning does not require a tractogram of the
whole brain, hence analyzing the whole scan is unnecessary. Therefore, the artificial neural
network processes small samples picked from the entire study. As a result, the amount of
analyzed data is small, allowing quick calculations. The neural network model accepts as
the input a sample of a predefined size, e.g. 5 x 5 x 5 voxels. It outputs a tensor of likelihoods
of the same shape as the input, containing scalar values used by a search path algorithm to
calculate the topology of the nerve tract.

Details of the methods and their implementation are discussed in the following sections.
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6.2 Automated tracking pipeline

The HyTract method assumes that the neural network processes diffusion data in small por-
tions - cubes with a size of e.g. (5x5x5 voxels. Hence, the automated pipeline guides tracking

through the white matter.

Algorithm 1 Automated tracking
Require: S, s€ §, set of tracking seed points
Require: M (D), neural network model operating on a three-dimensional diffusion tensor D
Require: A(T), Path search algorithm operating on a three-dimensional tensor T
Require: Y (x), Function sampling diffusion data, where x is the central point
Require: y(x), Stopping criterion function
while S # & do
Tracts = {s;,}
while y(s;) #1 do
D —Y(s;)
T — M(D)
P — A(T)
if |[P| > 1 then
Append existing tract to each, tracts will have multiple paths
elseif |P| =1 then
Extend current tract
end if
end while
end while

Tracking starts with a set of tracking seed points. These are defined by a user performing
tracking and can be picked depending on the aim of the tracking. For instance, if someone
wants to compute tracts originating in a given functional cortex area, such tracking seeds
can be picked from the interface between the gray and white matter in that area. When
attempting neurosurgery, seed points can represent the area adjacent to the planned site of
the intervention.

Each seed point is treated as the beginning of the tract. The first step is to draw the de-
sired portion of the diffusion data surrounding the seed point. In all of the descriptions,
a cube of the size of 5 x 5 x 5 voxels is used (5 voxels long in each dimension), with the seed
point as the central voxel. This small sample of the diffusion data is processed by the ANN,
which outputs a three-dimensional tensor of probabilities for each voxel. These values de-
scribe how likely the voxels are to contain the same neural fiber as the central one.

In the next step, the path search algorithm is employed to calculate the paths within the

cube. The process of tracking within the cube is described in the section 6.4. This algorithm
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Figure 6.2: Euclidean distance from the seed point as the stopping criterion

returns either a single path or a set of paths if fiber split is detected. If the result is a sin-
gle path, a current path is elongated. If more than one path is found, the existing path is
multiplied, and each copy is extended with the paths found. Consequently, the approach
described here is probabilistic, computing all possible paths originating at a given point.
Tracts for a given tracking seed are continuously extended until no other paths are found
in a drawn cube (see target selection in section 6.4) or the stopping criterion is met. Consid-
ering this system is designed for use in planning neurosurgery, an adequate stopping crite-
rion is a Euclidean distance measured from the beginning of the tract. Figure 6.2 visualizes
a seed point (yellow square) and their respective tracking limits (dashed line) at a predefined

distance from the origin d;.

6.3 Neural network for diffusion data processing

A neural network processes the diffusion data. The output of this network can be used in the
following steps to calculate the streamlines. It is common to design a neural network in one
of two ways, either by growing or pruning. Due to the growing method’s greater popularity,
it has also been adopted in this work.

In each case, we consider input containing two vectors. The first item is the gradient

table, containing information about the magnetic field gradient used in the acquisition of
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each sample during the MRI experiment. The size of the gradient table is N x 3, where N is
the number of samples from the diffusion data. Gradient table is the product of row-wise
multiplication between the gradient vector matrix and gradient values. The second element
of the input data is a series of three-dimensional matrices with diffusion intensities. The
number of matrices depends on the specified sample count used or acquired during MRI
experiment.

Neural network models designed in this work allow configurable cube size (a portion of
diffusion intensity 3D matrix) and the number of samples. For a cube size of M, the input
diffusion intensities matrix is of size M x M x M x N. Cubes of small size (e.g. 5 x5 x 5 voxels)
can be iteratively drawn from the data, and neural network results are reassembled after-
wards. This procedure allows limiting the area for which computation shall be made. The
location from which the cube is drawn is not random. The central voxel of the cube always
corresponds to a seed point used to start tracking or to a voxel containing part of an already
computed streamline (see section 6.2).

The number of samples used can be limited as well. Each sample in the experiment por-
trays a water diffusion in a specific direction (described by the gradient table) for all voxels.
Intuitively, it is possible to compute diffusion intensity for each voxel in all possible direc-
tions in the three-dimensional space, using just several selected samples. Each sample mea-
sures the strength of the water diffusion in a particular direction described by the gradient
vector.

Limiting the size of the part of the diffusion matrix considered (drawing cubes) and the
number of samples analyzed by a neural network in a single run allows to decrease the num-
ber of neurons in the model without deteriorating its performance. The model’s output is
a matrix of size M x M x M x 1. Each value in the matrix describes how likely does the corre-
sponding voxel contain a continuation of the streamline from the central voxel.

Each architecture presented in this work is initially trained with a cube size of M =5 and
a sample size of N = 14, i.e. 14 measurements. This means that the size of a gradient table
is 14 x 3 or 42 x 1 when flattened. A fragment of diffusion data (a cube) providing input to
the model will have the size of 5 x 5 x 5 x 14, or 1750 x 1 when flattened. Architectures are

depicted for M=5 and N= 14.
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6.3.1 Minimal architecture

The simplest deep-learning neural network contains at least three layers: an input layer,
a hidden layer, and an output layer. Such architecture has been used as the first attempt in
this work. Figure 6.3 depicts this model in more detail, with the input-output size of each
layer. Bg denotes the second value of the gradient vector for 3rd sample, V3 a gradient value
for the 3rd sample, G elements of a gradient table vector, I elements of the diffusion input
vector, and F elements of the input feature vector. The gradient table and diffusion data sam-
ple are flattened to a vector of 42 and 1750 scalar values. Both input vectors are concatenated

to produce a feature vector of 1792 values.
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Figure 6.3: Minimal model

The input layer is the fully-connected (FC) layer accepting 1792 features and is activated
by the ReLU function. The output of this layer is a 2048 x 1 vector, matching the input of the
hidden layer, which also has ReLU activation. The output of the hidden layer is 1024 and is
passed to the model output layer, followed by a sigmoid function. The model’s output is the
three-dimensional matrix of probabilities for each voxel, as described in the introduction to

this section.
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Figure 6.4: Two-fold-input model

6.3.2 Two fold input model

The Two-fold-input model is an extension of the minimal network model. Architecture of
this model is depicted in figure 6.4. The input layer is replaced with an input stage. It consists
of two FC layers, processing the input data in parallel. The gradient table part results in
a vector of size 1000 x 1. The diffusion data part results in the vector of size 5000 x 1. Both
vectors are concatenated to create a single vector of size 6000 x 1, passed to the hidden layer
with ReLU activation. The output layer accepts a vector of size 1000 x 1. It is followed by
a sigmoid function to compute a three-dimensional matrix of probabilities for each voxel as
in the minimal model.

Replacing a single input layer with two independent layers allows the network to have
two sets of unconnected weights to process the input data. This stage’s output size was in-
creased compared to the minimal model. However, due to efficient parallelisation, it does
not influence efficiency. This procedure allows using more neurons in the hidden layer. As
a result, this layer intuitively has a higher capacity to learn the relationship between two

types of data.
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Figure 6.5: Two-fold-input model with attention weights

6.3.3 Two fold input model with input attention weights

The two-fold-input model with attention weights extends the two-fold-input model described
in the previous section. When concatenating the two vectors from the input stage, each is
multiplied by a scalar value, y and 6 respectively (Fig. 6.5). Both are model parameters, and
their values change during the learning process. These values will reflect the importance of
individual data in the learning process, increasing the model’s performance. Due to their

ability to weaken or strengthen the signal, they were named input attention weights.

6.3.4 Two-fold input model with convolution

Even though fully-connected layers have the potential to simulate all the other, more spe-
cialized layers, the other architectures were tested as well. The two-fold input model with
convolution, presented in figure 6.6, is very similar to other architectures presented above.
The main difference is in the diffusion data input layer, which was replaced with a one-
dimensional convolution layer. It accepts 125 channels on input and outputs 250 channels.
The kernel size for convolution is set to 5 and stride to 2. The flattened output of this layer
is a vector of size 1250 x 1. The gradient processing layers’ output has decreased and is left
the same as its input. After merging the two vectors, the input to the hidden layer has a size

of 1292 x 1. The output of the hidden layer, as well as the output layer of the network itself,
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Figure 6.6: Two-fold-input model with convolution layer
Architecture Number of layers | Number of parameters
Minimal model 3 5898365
Two-fold input model 4 14938125
Two-fold input model with weights 4 14938127
Two-fold input model with convolution 4 1576431

Table 6.1: Number of trainable parameters in architectures

remains unchanged in comparison to the architectures described previously.

6.4 Modified A* algorithm

The output of an artificial neural network is a three-dimensional matrix of specific dimen-
sions (e.g., 5 x5 x5 voxels). Each element of this matrix corresponds to a voxel from the input
sample, and each value is the probability with which a given voxel has the same nerve fiber
as the central voxel. This data is used to build a graph in which the vertices correspond to in-
dividual voxels and, consequently, to particular values of the resulting network matrix. Edges
connect the vertices to map the voxels’ immediate vicinity. Figure 6.7 shows the graph built
from the network’s output. For simplicity, the concept is shown in two dimensions. Each
neighbour of a given node has a weight assigned to it. This weight equals a probability value
given by the neural network, describing how likely it is that a given voxel (node) contains the

same neural path as the central voxel at position [2,2,2]. By design, a central voxel is treated
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as containing a neural path. Hence other voxels in a cube are considered in this respect.

The HyTract method aims to build a tractogram - the topology of the nerve fibers. To
achieve this a path search algorithm is required to find the most probable paths in the graph,
representing neural fibers. Some of the classical methods described in section 5.2 use a mod-
ified Dijkstra algorithm to reconstruct the trajectory of a neural path. In this work Dijkstra
algorithm was also tested (data not shown). However, in this case nodes represent voxels,
which have well-defined position in the three-dimensional space. In such a case an Euclid-
ian distance can be used as a good approximation of the target distance between two nodes,
allowing to take the advantage of an A* variant of Dijkstra.

In HyTract implementation of the path search, an A* algorithm starts at a given starting
node (seed point) and aims to find a path to the given goal node having the smallest cost.
This objective is achieved by keeping a tree of paths that originate at the seed point and are
extended one node at a time until the stopping criterion is met. At each step, an algorithm
must estimate which path to extend. It is done based on the cost of the path so far and an
estimate of the cost required to extend the path to the target node. It can be achieved by
minimizing the following

f(vn) =gy + h(vy, vy, (19)

where v,, is the current node, v; is the target node, g(v,) is the cost of the path so far, and
h(v,, vy) is the heuristic function, estimating a cost of a path from the current point to the

target. To use neural network output probabilities for minimizing f(v,), the cost for a given
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Figure 6.8: Source and target points for a path search in a grid with possible paths found by
an algorithm

nodev, have to be computed as a probability subtracted from 1:

Ov,=1-=Vn, ¥Yn€l0,1], (20)

where y, is the neural network output for a node n. The cost for a path so far becomes

a simple sum of all the nodes in the path:

¢
gm) =) pu, (€N, (21)

n=1

where ( is the total length of the path so far (streamline). The heuristic function used is a

Euclidean distance from the current node to the target

h(vy, vy) = \/(an —01)?2+ (Vn2 — V12)? + (Un3 — U13)? (22)

where v,, = (v,1, Vn2, Vp3) is the current node, and v; = (v, V42, Vy3) is the target node.

A path search is performed in small samples, as described in the HyTract definition. For
described grid size of (5 x 5) the central voxel [2,2] is the starting point (marked green, Fig.
6.8, a). The targets, [2,4] and [3, 0] are nodes on the border of the cube with probability value
equal to or greater than the predefined threshold, e.g. ¥ = 0.5 (marked red, Fig. 6.8, a). This
threshold has to be picked based on the mean prediction value for a positive class, calculated
from predictions during the training. It indicates the value ¥ above which predictions are

correctly classified as containing neural fiber.
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Two paths can be computed for an example grid shown in figure 6.8 a. One of them,
marked blue, contains voxels ([2,2],[1,3], [2,4]). The second, marked purple, contains voxels
([2,2],13,1],[3,0]) (Fig. 6.8, b). Depending on the paths found in other cubes, a path marked
with blue can continue the purple one if purple has already been marked. Such a situation
would occur if a purple path in the previous steps had been selected as the connection be-
tween tracking seed and current [2,2] central voxel. If another path leads from the tracking
seed to the central voxel, the situation depicted in figure 6.8 can be interpreted as a splitting

fiber.

6.4.1 Splitting fibers

Splitting fibers are typical in brain organization, where a single fiber bundle splits into two,
connecting the source area with two or more target areas. It is easy to detect such cases by
using a path search with A* on a set of cubes. If we consider the situation depicted in figure
6.9 in the first two grids (a and b), a tract from point A (seed point) to point B (border target
on the second grid, b) has been computed. Drawing the next grid (c), we see three paths
originating from the central voxel (point B, the target in the previous grid). Gray path has
already been marked in the previous cube. The green path is identified as connecting central
new voxel B with border target C. The blue path connects central voxel B with another border
target D. In that case, none of the paths (B — C and B — D) was seen previously, indicating
splitting fibers. In such a case, there is no certainty about extending the current streamline
into a single direction. Both paths, A — C and A — D, are probable and are be included in

the results.

6.4.2 Tract smoothing

Tracks computed on the resolution of voxels can have sharp turns. This situation can be
observed in an example on the upper left pane in figure 6.10. Neural fibers in the body do
not arrange themselves in such a way. A simple moving average method (SMA) described in
[106], can smooth out the fibre’s topology.

For each node v, average coordinates in the three-dimensional space can be calculated

for a given window size z, where the window size corresponds to the currently analyzed por-
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SMA is commonly used in financial applications [107]. In this case, for each node, anodes
Vn—k+1+ Un—k+2 + ...+ Unsk are taken into account to reflect the overall fiber topology better.
Figure 6.10 depicts using SMA with window sizes z set to 3, 5, and 7 on a crafted example.
It is visible that the larger the window size, the more smooth the fiber becomes. However,
the anatomic relevance of such smoothing is in question, like in the U-turn marked with
arrows on the lower panes. In this case, the smoothed topology deviates significantly from
that determined by the algorithm (red and blue lines). For this reason, smaller window sizes
should be used to more faithfully reflect the results of the path search algorithm (green line,
upper right pane). Even using such a small window size, SMA can fix artefacts created by
favouring diagonal transitions between voxels (marked with arrows, upper right pane in Fig.

6.10).
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7 Diffusion data analysis and processing

Artificial neural network is one of the key elements of the HyTract method. Training this net-
work requires the preparation of appropriate labels. For this purpose, data from the diffusion
tensor imaging (DTI) method and anatomical imaging (T1, see Fig. 2.9) were used. After
proper preparation, they were used to create tractograms using the three methods avail-
able in the Dipy library [108]. The fibers confirmed by at least two methods were used to
create the labels (tractograms), thus substantially decreasing the number of false positives.
Available tools, libraries and platforms were reviewed to solve the problems discussed in this
chapter. Based on this selection, an efficient computational pipeline was proposed to obtain
labels for artificial neural network training.

Creating labels can be divided into four stages presented in Fig. 7.1: coregistration, cal-
culating brain masks, tractography, and label creation. These steps will be discussed in more

detail in the following subsections.

7.1 Scan coregistration

The initial step in the label preparation pipeline is the coregistration of different MRI images.
Anatomical scans are usually registered in a different resolution than diffusion data. In the
case of the HCP subjects, T1 and T2 scans are done with a voxel size of 1mm, while the
diffusion is with a voxel size of 1.5 mm. Thus the anatomical scan has to be coregistered

to the diffusion scan space to relate spatial information properly.
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The first step is to extract the mean By image from the set of diffusion measurements,
which can be achieved by dwiextract tool from MRtrix3 package [92]. This image is a rigid
reference to which the T1 image will be aligned. Registering T1 to By is done using FMRIB’s
Linear Image Registration Tool (FLIRT) [109, 110, 111] from FSL software package [112, 113,
114] using six degrees of freedom for transformation. The resulting files are the T1 image in
the same space as the diffusion image and a transformation matrix. The resulting T1 image

is then used to calculate all the necessary masks used in the further steps.

7.2 Brain masks computation

To prepare tractograms based on which the labels were created, several brain masks were
required. These include a white matter mask, a white-matter-gray-matter interface mask,
and a functional area mask.

White matter mask can be computed from T1 scan data. Its main role is to target tractog-
raphy algorithms to generate streamlines in regions containing white matter tissue, where
the neural fibers are expected. Firstly a five-tissue-type (5TT) segmented tissue image has
to be computed from the T1 image. The 5ttgen tool [115] from MRtrix3 package [92] has
been employed. At this stage, to limit the amount of data processed, a non-brain tissue is
removed from the image by Brain Extraction Tool (BET) [116] from FSL. White matter mask
(WM mask) can be then easily extracted from 5TT image cropped to the brain area with mr-
convert tool from MRtrix3 package (Fig. 7.2).

Due to the underlying anatomy of the neural connections, neural tracking usually starts
on the interface between gray and white matter. Mask identifying this interface, gray matter-
white matter interface mask (GMWMI mask), can be obtained by using a dedicated tool
5tt2gmwmi [115] from MRtrix3 package (Fig. 7.2).

Tractography of the whole brain is an interesting field of study. However, in neurosurgical
applications, it is more important to track the fibers coming out of a specific eloquent region
of the cerebral cortex. In an ideal scenario, this region should be determined by fMRI. For
the presented studies, Juelich histological atlas was used to obtain the location for Broca’s
region (see Fig. 2.3) [117] and area V1 from the visual cortex [118]. Functional regions in the
atlas have been annotated on MNI152 1mm brain, a template T1 image with 1mm voxel res-
olution [119, 120]. This image was created by linear co-registration of 152 normal T1 images

to the common space. The main purpose of this venture carried out by the International
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Consortium of Brain Mapping (ICBM) was to define the standard anatomy. Herewith, it is
possible to create masks for functional regions in MNI152 space, which can then be trans-
formed into the subject space. The values represent the likelihood of belonging to the func-
tional area of interest. FLIRT and FNIRT [121] tools were used to generate a transformation
matrix from the subject space to the MNI152 space. This transformation matrix is used to
transform functional area masks to the subject space as presented in Fig. 7.3. To use masks
efficiently, it is a good practice to binarize them and use only voxels above a given threshold
WY € [0, 1]. For this study, a low threshold of ¥ = 0.1 was used not to narrow the starting region
too much.

The last computed mask is the gray matter-white matter interface in the functional re-

gion, obtained by combining the GMWMI mask with a functional mask.

7.3 Computing tractograms for training labels

To calculate labels to train the models, tractograms were built for nerve fibers originating

in the eloquent regions responsible for speech generation. Voxels on the interface between
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white and grey matter within the Broca region in the left and right hemispheres (BA44 and
BA45) were used as the seed points. For this, a GMWMI mask was combined with an ap-
propriate functional mask, computed as described in section 7.2. The process is depicted in
Fig. 7.4.

In addition to the seed voxels, local tracking requires a method estimating the direction
of water diffusion from MRI data and a stopping criterion defining where to stop tracking.
Given the high incidence of false positives in tractography results, three algorithms were
used: EuDX with Constant Solid Angle (CSA) model [122], Deterministic Maximum Direc-
tion Getter (DMDG) [108], and Closest Peak Direction Getter (CPDG) [108]. These methods
compute streamlines, designated as a set of adjoining points in a three-dimensional space.
Streamlines generated by these methods are combined into a “meta-tractogram” used to
compute the labels. Label creation is described in the following section 7.4.

The Constant Solid Angle ODF model fits diffusion data to estimate the Orientation Dis-
tribution Function (ODF) at each voxel [123]. The ODF characterizes water diffusion as
a function of direction. Peaks of an ODF model can be used to calculate fiber orientations in
all voxels of white matter using the EuDX algorithm [122]. In this work, the implementation
provided in the Dipy library [108] was used. The CSA model makes use of the spherical har-
monic (SH) basis. SH order was set to 6. Peaks were computed directly from the CSA ODF
model, with the default sphere providing discrete directions for evaluation. The relative peak
threshold was set to 0.8, and the minimum separation angle to 45°. This method also uses
a white matter mask to restrict the area where tracking occurs. The stopping criterion was
used to hamper tracking to the areas where the ODF shows significantly restricted diffusion.
It is achieved by thresholding on the generalized fractional anisotropy (GFA), where a value
of 0.1 was used.

Another method used is the Deterministic Maximum Direction Getter (DMDG). It fol-
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lows the trajectory of the most probable pathway within the tracking constraint. This algo-
rithm can be used with the same local model and parameters as the previously described
approach. However, it does not follow the peaks of the local model like EuDX tractography
but rather uses the entire orientation distribution. Diffusion data were fitted with the Con-
strained Spherical Deconvolution (CSD) model to provide the DMDG algorithm with the
spherical harmonic representation of the Fiber Distribution Function (FOD). CSD model
was fitted only in the voxels belonging to the white matter. Tracking was performed with
a maximum separation angle of 30° and a default sphere. The stopping criterion was the
same as in the EuDX algorithm, with a threshold of 0.1.

The last method used for computing tractograms in the subjects was the Closest Peak Di-
rection Getter method. It uses the CSD model to fit diffusion data, similar to the case of the
DMDG algorithm. A maximum separation angle of 30° was used. The only difference in pa-
rameters is in the sphere used. Here, a small sphere is recommended for the best algorithm
performance instead of the default sphere used in the previous algorithms. A stopping crite-
rion was used with the same parameters as in the case of the EuDX and DMDG approaches.

Figure 7.5 presents a histogram of streamlines computed using the abovementioned meth-
ods. It clearly shows that the EuDX algorithm produces the most streamlines compared to
other methods. Most of them are short, depicting connections within the Broca region itself,
as depicted by a red arrow in figure 7.6. The blue arrow indicates neural fibers forming to-
wards the posterior part of the brain. These could indicate a connection with a Wernicke’s
area located in the superior temporal gyrus of the temporal lobe.

Meta-tractograms were created based on the results obtained by all three methods. Since
the EuDX algorithm produced the largest number of streamlines, it was used as a reference
to which other methods were compared. For each streamline from the reference set, the
fiber closest to it in the other two methods was sought to confirm it. One of the parame-
ters considered was the length of the two streamlines. The shorter one should contain at
least as many points as 80% of the longer one. Those that do not meet this criterion were
skipped automatically. The second criterion is the Mean Euclidian Distance between two

streamlines:

1 N
MED = N Z \/(aix - bix)z + (aiy - biy)2 +(aj; - biz)zr (24)
i=1

where N is the length of the shorter streamline, a and b, are voxels of two streamlines being

compared with coordinates defined by ix, iy, iz for the x, y, and z planes. For each reference
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Figure 7.5: Streamline lengths histograms

streamline, a streamline of the lowest possible MED was picked from the two other methods.
Meta-tractogram contains those streamlines confirmed by similar streamlines computed by
DMDG or CPDG methods with MED smaller or equal to a given threshold.

Figure 7.7 presents meta-tractograms created based on three thresholds of MED value 1,
2, and 3. The reference tractogram, computed with the EuDX method, is shown for com-
parison. Using a MED value threshold of 1 is too strict, as many essential connections with
distant regions are lacking (marked with yellow arrows). They appear when a MED value
threshold of 2 is used. However, the amount of streamlines not included is still high, leading

to the assumption that this threshold is too strict. A MED value threshold of 3 was chosen to
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Figure 7.6: Visualisation of EuDX tractogram

allow for more possible pathways, simultaneously leaving out the least probable ones.

7.4 Creating labels

The labels are created directly from the meta-tractograms. Figure 7.8 depicts (in 2D for sim-
plicity) how a streamline is marked in the three-dimensional space of the diffusion data.
For each streamline in the meta-tractogram (e.g. A and B in Fig. 7.8) labels are computed
independently. If a streamline occupies a particular voxel, it is marked with 1. All the other
voxels are marked with 0. In this way, a binary mask is obtained, marking the projection of

a streamline in the same space as the diffusion data.
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Figure 7.7: Meta-tractograms with different MED thresholds
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Figure 7.8: Creating labels from meta-tractograms

8 HyTract ANN training and validation

8.1 Experimental setup and datasets

8.1.1 Test scenarios

The research focused on comparing the efficiency and performance of different variants of
artificial neural network models and different shortest-path algorithms. In the case of the

models, tests were performed with the aim of:
1. selecting the best network architecture for a given task

2. selection of an algorithm for the optimal determination of ANN weights in terms of

accuracy and performance

3. comparing the performance of the method for different weight decay parameters and

selecting the best value
4. studying the effect of cube size on the quality of the solution.

To evaluate the results of the tests, the area under the ROC curve (AUC) was used [124, 125].

8.1.2 Dataset

Data from the Human Connectome Project (HCP) database (https://ida.loni.usc.edu/login.jsp)
was used. HCP is the result of efforts of co-investigators from the University of Southern Cal-
ifornia, Martinos Center for Biomedical Imaging at Massachusetts General Hospital (MGH),

Washington University, and the University of Minnesota [126, 127, 128, 129, 130].
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Training and validation subsets were prepared to train the models, based on the data
from five subjects randomly selected from the HCP dataset (case ids: mgh_1007, mgh_1010,
mgh_1016, and mgh_1019). Meta-tractograms prepared for each subject were split into train-
ing and validation in the proportion of 8:2 randomly. Thus streamlines from each subject are

represented in both subsets. The dataset was processed as described in chapter 7.

8.2 Results

8.2.1 Various architectures and learning parameters

When using neural networks, choosing the right network architecture is important. This ex-
periment was designed to elucidate the best-performing architecture from those proposed
in section 6.3. A set of learning parameters were chosen to compare the results reliably. Each
architecture was trained for 100 epochs. The choice of 100 epochs as the training length
was based on previous experiments (data not shown). During these experiments, a deceler-
ation in the decline of the loss value and an increase in prediction accuracy was observed.
Therefore, using such a constraint to compare different proposed architectures and learn-
ing parameters in a reasonable amount of time was deemed reasonable. Experiments were
carried out with three learning rates le-3, le-4, and le-5. This approach prevents model
rejection due to the lack of generalization caused by a high learning rate. The experiments
were run using the Adam optimizer and Binary Cross Entropy loss function [31].

For each training, two plots are drawn (e.g. Fig. 8.1 for Minimal Model), depicting the
loss function minimization (a) and network performance measured by calculating the area
under the ROC curve (b).

Figure 8.1 shows the training process of Minimal Model architecture (presented in Fig.
6.3). The best results in terms of the loss function minimization and network performance
were obtained using a learning rate of 1e-4 with aloss value 0f 0.1082 and ROC AUC of 0.9531
measured on the validation dataset. Values of the minimal loss and maximal ROC AUC for
all experiments are summarized in table 8.1 at the end of this section.

The training process of the Two-Fold Input Model (presented in Fig. 6.4) is presented in
Figure 8.2. Similarly to the Minimal Model, the best results were obtained when training with
a learning rate of le-4. For this experiment, minimal loss on the validation dataset reached
a value 0f 0.1028 and ROC AUC of 0.9587.

Figure 8.3 depicts training of the Two-Fold Input Model with attention weights (pre-
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Figure 8.1: Minimal model training
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Figure 8.2: Two-fold input model training
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Figure 8.3: Two-fold input model with weights training

sented in Fig. 6.5). As in previous experiments, the best results were achieved with a learning
rate of 1e-4. During optimization, the loss function on the validation dataset reached a value
0f0.1038 and a ROC AUC value of 0.9578. After training for 100 epochs, the attention weights
have values y = 0.0622, associated with the gradient table, and § = 4.2595 associated with the
diffusion data.

Architecture containing a convolutional layer processing diffusion data input (presented
in Fig. 6.5) did not show an improvement in terms of a lower training loss or increased ROC
AUC value. The training process is depicted in Figure 8.4. As in all other experiments, the
best results were obtained using a learning rate of 1e-4, with training loss achieving a value
0f 0.1062 and ROC AUC 0.9552, measured on the validation dataset.

Using a weight decay is a regularization method allowing for better generalization [131].
In this experiment, various values of the weight decay were tested on selected architecture
to investigate whether it would improve model performance further.

Figure 8.5 shows the results of three experiments with weight decay values of 1e-2, 1e-3
and le-4. Plots for a learning loss and ROC AUC values clearly indicate that adding weight
decay did not improve the model performance. Learning loss did not decrease for any of the
testing values. Even though ROC AUC increased for each experiment in the training subset,
it remained constant for the validation dataset, indicating a lack of generalization. Hence,

a weight decay shall be set to 0 when training the final model.

66



0.160

0.150

0.140

Learning loss
o
=
w
o

40

20 40 60 80 100 0 20
Epoch nr.
—— 1le-3 (train) le-4 (train) —— 1le-5 (train)
- le-3 (valid) le-4 (valid) - le-5 (valid)

Figure 8.4: Two-fold input model with convolution training

60
Epoch nr.

80

Architecture Learning rate Min loss MaxROCAUC
Train Val Train Val
le-3 0.118 | 0.1248 | 0.9378 | 0.928
Minimal model le-4 0.0984 | 0.1082 | 0.9628 | 0.9531
le-5 0.1069 | 0.1093 | 0.9534 | 0.9505
le-3 0.1046 | 0.1103 | 0.9563 | 0.9496
Two-fold input model le-4 0.0925 | 0.1028 | 0.9685 | 0.9587
le-5 0.1046 | 0.1068 | 0.9562 | 0.9536
le-3 0.1105 | 0.1159 | 0.9488 | 0.942
Two-fold input model with weights le-4 0.0922 | 0.1038 | 0.9687 | 0.9578
le-5 0.1028 | 0.1056 | 0.9581 | 0.9551
le-3 0.1013 | 0.1104 | 0.960 0.950
Two-fold input model with convolution le-4 0.0941 | 0.1062 | 0.967 | 0.9552
le-5 0.1106 | 0.112 | 0.9484 | 0.9467

Table 8.1: ANN models performance with different architectures (training and validation

phases)
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Figure 8.5: Influence of the weight decay on training

8.2.2 Different optimization algorithms

Despite Adam Optimizer being the most widely used, other algorithms have been proven
to perform better in some cases. Hence, this experiment has tested different optimisation
algorithms on the Two-Fold Input Model with attention weights. Besides Adam, classical
SGD and SAM optimizers were tested. Given a SAM requires a basal optimizer to work on,
two experiments were run, with SAM using SGD and Adam. Figure 8.6 depicts these experi-
ments. For the SGD optimizer and SAM with SGD as the backbone, a learning loss decreased
in the first few epochs to remain constant throughout the rest of the training. ROC AUC for
these two optimizers reached levels below 0.85, which is much less than for other optimiz-
ers tested. The plots are basically the same for the training and validation phases. In the
case of Adam and SAM with Adam backbone, a steady drop in learning loss can be observed
throughout the whole training. Values of ROC AUC are similar and reach levels above 0.95
which are expected for Adam optimizer as seen in the experiments elucidating the best ar-
chitecture. The use of SAM optimizer with Adam backbone does not lay better results. This
indicates that the pure Adam optimizer shall be used, especially given the longer time re-
quired for training with SAM + Adam. This is caused by the need for two backward passes to

minimize the Adam and the SAM optimizer.
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Figure 8.6: Two-fold input model with weights training using various optimization algo-
rithms

8.2.3 Effect of a cube size on results

Previous experiments have examined the effect of specific parameters on the model per-
formance without considering different input sizes. One of the parameters that can affect
the path search stage profoundly is the size of the cube used. With increasing cube size the
amount of the data processed by the network at once is bigger and the granularity of the
search changes. A first step in this experiment was to train neural network for three cube
sizes: 5 x 5 x 5 used in the previous experiments, 7 x 7 x 7 and 9 x 9 x 9. A matrix 3 x 3 x 3 was
not considered since, in such an approach, the voxels on the border directly surround a cen-
tral voxel. Hence, there is very little room for the path search algorithm to work. Increasing
the cube size significantly increases the number of model parameters.

Figure 8.7 depicts the training process by visualizing the loss function and ROC AUC met-
ric, as in the previous experiments. All three networks were trained on the same dataset, with
the same parameters of learning rate le-4, and weight decay set to 0. As the plots clearly
show the models for cube size 7 and 9 outperforms significantly those for cube size 5. The
model for cube size 7 reaches a ROC AUC of 0.9714 on a validation dataset after 100 train-
ing epochs. The model for cube size 9 reaches an even higher ROC AUC value on the same
dataset - 0.9787. All values are summarized in a table 8.2.

One of the explanations for this might be the number of parameters (Tab. 8.3). The model

for a cube size 7 is twice as big as the one for a cube size 5. The model for cube size 9 is even
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Figure 8.7: Two-fold input model with weights training with various cube sizes

Cube size Min loss Max ROC AUC
Train Val Train Val
5x5%x5 0.0865 | 0.1012 | 0.9734 | 0.961
7X7X7 0.0487 | 0.0579 | 0.9824 | 0.9717
9x9x9 0.0307 | 0.0369 | 0.9875 | 0.9788

Table 8.2: Loss and ROC AUC values for training Two-fold input model with weights with
various cube sizes
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Cube size | Number of model parameters

5X5%5 14938127
TX7X7 30416345
9x9x9 57822731

Table 8.3: Effect of cube size on the number of trainable model parameters in Two-fold input
model architecture

bigger, and the number of parameters totals almost 58 mln. In bigger cubes, the view is also
much broader. It allows to check if a branching fiber has a continuation and is a true fiber,

or if the branching is just a data error.

8.3 Training summary and discussion

The network training experiments focused on selecting the appropriate architecture and ex-
amining the impact of the various learning parameters on its effect. Multiple architectures
with a controlled set of parameters showed very similar performance measured on the val-
idation dataset. However, even a small increase of 0.01 in ROC AUC is desirable in medical
applications. During these experiments, the architecture of the two-fold input model with
attention weights was selected for further testing, where it was combined with a path search
algorithm to build the desired tractograms. The attention weights values for a trained model
are 6 = 4.2595 (associated with the diffusion data) and y = 0.0622 (associated with the gradi-
ent table). It indicates that for obtaining a desirable network output scaling on the diffusion
data has to be much higher than for the gradient table. It follows the intuition that the infor-
mation is carried mainly in the intensity of voxels. However, information from the gradient
table is also important as it describes the MRI magnetic field when collecting data, hence the
value of y # 0.

The optimization of the weights of the network proceeds best with the Adam optimizer,
with a learning rate of le-4, leading to the model with a ROC AUC of 0.96, measured on the
validation dataset.

Due to the simple architecture of the network and the relatively small number of param-
eters to be learned, the training process did not require the use of regularization in the form
of the application of the weight-decay parameter, and its use even worsened the results. The
performance of the selected network admittedly was very similar to the network without

attention weights. However, their inclusion in the architecture makes it possible to ensure
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explainability regarding the relevance of individual input data.

Experiments with different cube sizes indicate that the cube sizes of 7 and 9 shall be
used, despite the bigger model sizes. However, such judgment shall not be made solely on
the results of the model training but also on the results of the path search stage of the hybrid

model.
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Figure 9.1: Primary visual cortex with main pathways [132]

9 HyTract testing

9.1 Testscenarios and datasets

9.1.1 Testscenarios

In the experiments described in the previous chapter, the best artificial neural network ar-
chitecture was selected and then combined with the shortest path algorithm. In the case of

the hybrid model, it was examined:
¢ the effect of cube size and the value of the threshold variable

e the effect of window size on smoothing

9.1.2 Dataset

A validation dataset is disjoint from the training and evaluation. It has been created using
data from a single randomly selected study, not included in the dataset used while train-
ing, with an id of mgh_1027. The dataset was prepared in the same way as for training, as

described in section 8.1.2.
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EuDX CPDG DMDG

Figure 9.2: Validation dataset

To check for bias toward detecting fibers originating in the Broca region, tractograms
were computed for the neural pathways originating in the V1 area of the visual cortex in the
occipital lobe (Fig. 9.1). A functional mask of the V1 area was obtained from Juelich histo-
logical atlas. It was binarized at the threshold value of 80 and combined with the GMWMI
mask [118]. The methodology behind creating masks, seeds, and labels is analogous to the
methodology used to create training and evaluation datasets, including algorithms and their
parameters. Figure 9.2 presents the EuDX, DMDG and CPDG tractograms used for reference

validation.
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Figure 9.3: Differences between reference tractograms

For validation, a subset of seeds was used, selected as follows. From each of the full ref-
erence tractograms (computed with EuDX, DMDG, and CPDG), the 100 longest fibers were
selected. For each of them, the position of the initial voxel was determined. All the start-
ing voxels were then collected into a single unique array. These starting voxels were used
as seeds for computing tractograms with different variants of the method presented in this
thesis. For comparison, reference tractograms were limited to the streamlines originating in
the selected seeds.

As the computed tractograms will be compared with these methods independently, it is
important to evaluate how much the reference methods differ from each other. Figure 9.3 is
a heatmap showing pairwise differences between these methods, expressed as a mean MED

computed for the closest streamlines in both.

9.2 Results

9.2.1 Fiber reconstruction with a path search algorithm

Model checkpoints representing a two-fold input with weights architecture were selected
to compare fibre tracking using different cube sizes. These checkpoints were obtained by
training a model to process data cubes of sizes 5 x5 x 5,7 x 7 x7and 9 x9 x 9 as indicated in
the Table 8.2.

Tractogram computation was run for each cube size independently on diffusion data
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Streamline
Cube size | Threshold | # streamlines i
Mean | Max

5x5x5 0.4 4 17 18
04 4848 24.80 73

0.5 1190 22.53 46

7X7X7 0.6 403 19.86 33
0.7 67 18.46 26

0.8 18 16.94 21
0.4 12899 32.79 | 105

0.5 6459 24.94 51

0.6 3373 24.21 92

9x9x9 0.7 889 20.69 | 48
0.8 449 18.73 40

0.9 296 18.90 36

Table 9.1: Basic statistics of streamlines obtained by computing tractograms with different
window sizes and thresholds

available for subject mgh_1027. As a threshold for the cube border targets, the following
values were used: 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. Other parameters were set constant. Eu-
clidian distance for the stopping criterion was set to 70 voxels, and the smoothing window
to 5, following the intuition explained in section 6.4.2. For clarity, only streamlines longer or
equal to 15 voxels were considered.

Table 9.1 shows the basic statistics for computed tractograms. Surprisingly using a method
variant with a cube size of 5 did not lay any streamlines longer or equal to 15 voxels unless
a low threshold of 0.4 was used. Even with such a low threshold, only four streamlines were
found with mean length of 17. Such a result indicates that this cube size should not be used,
as it does not lay longer fibers, large numbers of which are found in the brain.

Both variants for cube sizes 7 and 9 yield fibers much longer than the assumed thresh-
old of 15 voxels, some exceeding a 100. With increasing threshold values, the number of
streamlines and their length decrease. Such results are expected, given the more restrictive
selection rules for cube border targets. At the same time, increasing the cube size increases
the number of computed streamlines and their length. It is understandable, as with bigger
cubes, the network can interpret the data in a broader context. Moreover, the path between
the cube center and the border is longer, allowing to pass through the voxels of lower values,
that might not have been included otherwise.

Each of the computed tractograms was compared to the reference methods (EuDX, CPDG,

and DMDG using mean euclidian distance (MED), as described in section 7.3. During valida-
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tion, there was no length coverage restriction when searching for the most similar streamline
in the reference tractogram. This restriction was dropped, as the meta-tractogram was not
computed, and the presented method uses a different stopping criterion than the reference
ones.

Tables 9.2, 9.3, 9.4 depict the comparison between reference tractograms (EuDX, CPDG,
and DMDG), and tractograms computed with different cube sizes and thresholds. The trac-
tograms calculated by various variants of the presented method were closest to the EuDX
reference tractogram. The mean MED value is below 10 for five variants, highlighted green
in Table 9.2. These tractograms are presented in Figure 9.4 and 9.5. MED values below 10
suggest that tractograms differ with EuDX on a similar level as the reference methods, as
presented in Figure 9.3. Such inconsistency is not surprising. Using different algorithms and
thresholds in tractography can land different results.

The comparison to CPDG and DMDG methods was not as good, with a MED value be-
tween 10 and 20 voxels. The three best variants, compared to CPDG, are cube size 7 with
thresholds 0.4 and 0.8 and cube size 9 with threshold value 0.5 (marked green in Table 9.3).
The two best variants with a cube size of 7 are consistent with comparison to the EuDX
method. Very similar is the comparison of the different variants with the DMDG method.
The three lowest mean MED values were obtained for variants with window size 7 and the
threshold values of 0.4, 0.6 and 0.8 (marked green in Table 9.4. These results are consistent
with other comparisons made to EuDX and CPDG methods. Surprisingly, all mean MED
values for the variant with cube size 9 are much higher than those with cube size 7.

Comparisons made to the reference methods show that computed streamlines are highly
significant. The best variant assumes a cube size of 7 and a threshold value of 0.4, resulting
in the lowest mean MED value compared to all three reference tractograms. Anatomical
significance is also relevant. Tractograms resulting in a low number of short streamlines do
not reflect well anatomical fibers of the brain. Hence, the tractograms computed with a cube
size of 7 and threshold values of 0.6 and 0.8 shall not be considered anatomically significant,
similar to a cube size of 9 with threshold values of 0.8 and 0.9.

A visual evaluation of the tractograms supports these conclusions. Figure 9.4 and 9.5)
shows a comparison between EuDX reference tractogram (Fig. 9.4, a) on three sections
(sagittal, axial and coronal). All variants of the proposed method show a difference from

EuDX below 10 voxels of MED. The highest number of streamlines (4848) was computed us-
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, FuDX
Cubesize | Threshold | . \iehy | Max MED | Mean MED
5x5x5 0.4 13.9 17.31 16.13

0.4 3.41 19.82 9.34
0.5 3.45 18.63 10.12
7X7X7 0.6 3.63 17.45 8.12
0.7 473 16.00 10.34
0.8 6.64 11.96 8.52
0.4 3.83 20.47 11.51
0.5 3.38 20.15 10.40
0.6 3.73 19.79 10.27
9x9x9 0.7 3.18 20.31 10.20
0.8 4.36 15.88 9.54
0.9 5.04 14.86 9.40

Table 9.2: Comparison between tractograms computed with different cube sizes and thresh-
olds with a reference tractogram from EuDX method

. CPDG
Cube size | Threshold Min MED | Max MED | Mean MED
5x5x5 0.4 16.38 57.76 37.56
0.4 4.09 26.78 15.28
0.5 4.09 26.78 16.51
7X7X7 0.6 8.65 25.10 16.66
0.7 9.48 23.06 18.45
0.8 431 23.06 14.42
0.4 3.63 26.29 16.74
0.5 4.37 26.03 16.08
0.6 5.92 27.74 16.90
9x9x9 0.7 6.24 25.64 17.51
0.8 8.1 25.64 18.32
0.9 8.90 25.42 19.42

Table 9.3: Comparison between tractograms computed with different cube sizes and thresh-
olds with a reference tractogram from CPDG method
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Figure 9.4: Comparison of selected tractograms with EuDX algorithm; a) EuDX; b) HyTract
with cube size 7, threshold 0.4, no. of streamlines 4848, mean MED 9.34; c) HyTract with
cube size 7, threshold 0.6, no. of streamlines 403, mean MED 8.12
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. DMDG
Cubessize | Threshold | . \iehy | Max MED | Mean MED
5x5x5 0.4 15.4 60.34 38.58

0.4 4.74 35.55 15.60
0.5 4.78 28.94 16.25
7X7X7 0.6 7.23 27.07 15.63
0.7 10.90 23.40 17.97
0.8 4.77 23.40 14.62
0.4 4.36 34.54 19.27
0.5 5.48 31.78 17.21
0.6 5.27 34.24 17.30
9x9x9 0.7 6.34 31.37 18.02
0.8 6.34 29.07 17.62
0.9 11.38 27.09 19.25

Table 9.4: Comparison between tractograms computed with different cube sizes and thresh-
olds with a reference tractogram from DMDG method

Smoothing window size | EuDX | CPDG | DMDG
9.61 15.45 | 15.78
9.49 15.38 | 15.70
9.34 15.28 | 15.60
9.17 15.16 | 15.49
8.98 15.03 | 15.36

© N 0w o

Table 9.5: Different smoothing window sizes compared with reference tractograms

ing a cube size of 7 and a threshold of 0.4 (Fig. 9.4, b). They span both hemispheres and reach
the anterior parts, as expected from anatomy. One major track arranges superior to the Cor-
pus callosum. Another one, in the middle of the sagittal section, reaches towards a thalamus.
A part of this structure, the lateral geniculate nucleus (LGN), is a gateway through which vi-
sual information reaches the cerebral cortex [133]. The third major track reaches towards the
temporal lobe, creating a connection important for visual perception and memory [134].
Other presented variants lack most of the expected fibers. For instance, the variant with
a cube size of 7 and a threshold of 0.6 (Fig. 9.4) reconstructs a track superior to Corpus cal-
losum but does not reconstruct others. Furthermore, most variants compute only a small

number of short streamlines originating mainly in the left hemisphere, as shown in Fig. 9.5.

9.2.2 Different window size in path smoothing

For experiments with different smoothing window sizes, a tractogram computed with a cube
size of 7 and a threshold of 0.4 was used. The smoothing method was applied to all stream-

lines, with a window size of 3, 5, 7, and 9. Results are gathered in Table 9.5. With increasing
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b)

Figure 9.5: Selected tractograms computed with the hybrid model; a) cube size 7, threshold
0.8, no. of streamlines 18, mean MED 8.52; b) cube size 9, threshold 0.8, no. of streamlines
449, mean MED 9.54; c¢) cube size 9, threshold 0.8, no. of streamlines 296, mean MED 9.40
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window size, the mean MED value tend to decrease. However, the change is quite small,

especially considering the large number of streamlines in the set.

9.3 Tests summary and discussion

Final results were obtained by performing tractography for selected starting points of the
gray-white matter interface of cortical region V1. These computations were performed on
data from a patient who was not a part of the training and validation sets. The resulting
tractograms were compared with reference ones obtained for the same starting points (using
methods EuDX, CPDG and DMDG). Both visual analysis of the results and metrics using the
mean Euclidean distance (MED) between fibers indicate significant potential for the clinical
application of this method. Compared to one of the methods mentioned above, the average
MED values were less than 10 voxels, comparable to the differences observed between the
reference methods. The best variant assumes using a cube size of 7 and a threshold value
of 0.4. It lands many long streamlines, closely reflecting streamlines computed by reference
methods. Even more critical, computed streamlines follow anatomical tracks expected to
originate from the V1 cortex.

The use of smoothing shall not be neglected at all, given the anatomical organization of
the fiber tracks in the brain. As shown in Figure 6.10, the presented method can result in
paths with sharp turns. These do not occur naturally. The smoothing shall be used, prefer-
ably with a relatively small window size, e.g. 5. A larger window size could significantly

change the fiber topology determined by the path search algorithm, which is not desirable.
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10 Conclusions

Tools that support the work of neurosurgeons in planning and performing operations are in-
valuable. Thanks to their use, the operations’ time is significantly reduced. Most importantly,
fed with the right data, such systems allow neurosurgeons to determine the entry point and
scope of the intervention precisely. Good planning, in effect, significantly reduces the risk of
complications and unwanted side effects, such as aphasia or paralysis.

This thesis introduces a new tractography technique that can be successfully used in
neurosurgical planning - HyTract. The method uses a hybrid model consisting of an arti-
ficial neural network and an A* path search algorithm. The neural network is responsible for
analyzing diffusion data (DTI), and the result of its analysis is the input to the A* algorithm.

The diffusion data is processed in small portions, cubic chunks of the entire scan with
a side length of 5, 7, 9, or more voxels. With this approach, it is unnecessary to process all
the scan data simultaneously. The locations from which the slices are picked are determined
during the tracking itself using the A* algorithm. As a result, it is possible to calculate the
topology of nerve fibers starting at the specified locations (seed points) of the 3D MRI scan.

The deep network architectures developed in this work were trained on five scans ob-
tained from a publicized database of the international Human Connectome Project (HCP)
initiative. The resulting models achieved excellent performance with a ROC AUC measure
above 0.95.

Tests performed on a single subject, which was not a part of the training and validation
subsets, show that ANN combined with a path search algorithm allows for determining neu-
ral tracts with satisfying accuracy. Moreover, these experiments were carried out in another
brain area (V1 cortex) as training (Broca region), showing the method is not biased towards
the brain area it was trained with.

The HyTract method presented in this thesis is an original contribution to the technical
sciences in the field of information technology and telecommunication. It provides a novel
technique to compute tractograms, which can be successfully used in the preoperative plan-
ning pipeline, as it only requires basic knowledge of tractography from the user and assumes
no prior programming expertise. As the neural network processes the DTI diffusion data,
it does not require tedious preprocessing steps as in the case of already available methods.

When trained on raw material, the network tends to cope very well with noise and artefacts,
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naturally occurring in imaging studies when a strong magnetic field is used.

Furthermore, the proposed ANN architecture can be trained for other tasks like detecting
crossing fiber points. Implementation of the path search algorithm can be replaced by oth-
ers, allowing to obtain additional features of the white matter using the same underlying data
from the artificial neural network. An example is connectomic studies, concerned with elu-
cidating neural fibers connecting different functional areas of the cortex, passing the vicinity
of the surgery site. Such knowledge is incredibly valuable, allowing neurosurgeons to assess
the risks of impairments associated with specific motor or cognitive tasks. The modularity
of the technique itself makes it very versatile, providing a wide range of applications.

The versatility of the method comes with straightforward architecture. ANN has a rather
simple architecture, with a small number of learnable parameters, nevertheless allowing it
to achieve the goal. Splitting the DTI data into two separate inputs, processed by an indi-
vidual set of weights, boosts the network’s performance, allowing the use of just two addi-
tional fully-connected layers with a limited number of parameters. Given the small size of
the network, such architecture can be trained with ease, even on a personal computer with
a graphical processing unit (GPU) not designed for professional use.

The artificial neural network used in the HyTract processes the input data in small sam-
ples, a cube with a side length of 5, 7 or 9 voxels. The sampling is based on labels prepared
from the tractograms during the training. Hence, thousands of cubes can be sampled from
a single study, which allows for training the network on a small number of patient scans.
As the amount of data available in clinical settings is often limited, such an approach is
favourable.

The hybrid nature of this technique ensures the explainability of the obtained results.
The output of the artificial neural network is used to build a graph, which is then used to
determine the topology of the neural fibers. This makes it possible to interpret the reason for
which individual fibers were computed. This is incredibly important, especially in medical
applications when such a system is intended to support the work of clinicians. The corre-
lation of the method’s reasoning with medical knowledge increases physicians’ confidence
while using it in preoperative planning.

The results presented in this dissertation prove the thesis that an artificial neural network
combined with a path search algorithm is an efficient method for determining the topology

of nerve fibers.
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